
Expanding Universe and dynamics

The Universe is assumed to be homogeneous and isotropic. No preferential locations and no preferential
directions.

We have to define a metric for such a universe, especially for its spatial part (dl2):

ds2 = c2dt2 − dl2 (1)

Given our assumptions, a spherical coordinate system is an appropriate one:

dl2 =

[

dr2

1− kr2
+ r2

(

dθ2 + sin2 θdφ
)

]

(2)

where k is a scalar (the curvature) and we will discuss it later.
We also know that our Universe is expanding, so we want to introduce a stretching factor in front of
the metric, which will be time dependent:

dl2 = a2(t) [...] . (3)

The expansion factor

Let’s now try to understand what is the meaning of the expansion factor a(t). Let’s supposed a
signal is emitted at te, re and received by an observer at to, ro, we can always define our system such
that θ = 0 and φ = 0. Our signal propagates on a geodesic, this implies ds2 = 0, which gives us:

∫ to

te

dt

a(t)
=

∫ ro

re

dr
√

(1− r2k)
(4)

A second signal is emitted at te + δte and received at to + δto. Since our observer did not move,
and we assume that the scale factor stayed constant between te and te + δte we have that:

∫ to+δto

te+δte

dt

a(t)
=

∫ ro

re

dr
√

(1− r2k)
(5)

which implies:
∫ to+δto

te+δte

dt

a(t)
=

∫ to

te

dt

a(t)
(6)

Therefore,
δto
a(to)

=
δte
a(te)

, or,
λo

a(to)
=

λe

a(te)
. (7)

This result tell us that the difference in wavelength depends only on the ratio of scale factors at
the time of emission and absorption (detection). Put in more astronomical familiar form and using
the definition of redshift z:

z =
λo − λe

λe
→ a = (1 + z)−1. (8)

Spectra of QSO allows us to measure some element line emission up to z ≈ 7 − 8. In this case z
tells us about the difference in the value of the expansion factor between emission and detection. It is
not related to the receding velocity of the object (no Hubble like redshift!).
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The Hubble parameter

For nearby Universe I can expand a(t) in a Taylor series:

a(t) = a0 + ȧ(t− t0) +
1

2
ä(t− t0)

2... (9)

that we can rewrite as:
a(t)

a0
=

[

1 +
ȧ

a0
(t− t0) +

1

2

ä

a0
(t− t0)

2...

]

(10)

Since we know that 1 + z = a(t)/a0 we can rewrite the previous equation, and for small ∆t just stop
at the first order:

z =

(

ȧ

a

)

t=t0

∆t =
ȧ

a

Dist

c
. (11)

This is another incarnation of the Hubble law: vel = H×Dist, if this time we assume that the redshift
is due to Doppler effect and can be translated in a velocity. This implies that:

H0 =

(

ȧ

a

)

t=t0

. (12)

Let us notice that the Hubble constant it is not a constant, since by definition it is defined at a
precise time t = t0. On the other hand it is at least constant in space.

Friedman Equations

We will not derive the Friedman equations, a formal derivation can be found in any General Relativity
book. The ingredients needed are the following:

• The metric we defined before: ds2 = c2dt2 − a2(t)dl2

• The Einstein equations: Rµν +
1
2Rgµν + (−Λgµν) = 8πTµν . Where the term (−Λgµν) takes into

account a possible cosmological constant contribution.

• The Stress-Energy tensor Tµν , which is defined as a diagonal matrix [ρ, p, p, p] (density and
pressure), for analogy with a perfect fluid.

• Some mathematical manipulations

The 00, i.e. the time-time component of the field equation gives:

3
ȧ2

a2
+ 3

k

a2
− Λ = 8πGρ (13)

The three spatial components (all identical by symmetry, i.e the cosmological principle: homogeneity
and isotropy) give:

ä

a
= −

4

3
πG(ρ+ 3p) (14)

Subtracting equations 13 from 14, and dividing the resulting equation by (-2), we get

ä

a
= −

4πG

3
(ρ+ 3p) +

Λ

3
, (15)

which is an equation of motion and looks very similar to its Newtonian analog. Also the continuity
equation ρ̇+ 3(ȧ/a)(ρ + p) = 0 is hidden in equations 13 and 14.
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Newtonian dynamics

Let us considering an expanding sphere with total energy density ρ and volume V . The total energy
within the sphere is U = ρ× V . During the expansion the first law of thermodynamics tells us that:

dU + pdV = 0 (16)

since there are not heat sources (homogeneity) and not net inflow-outflow (isotropy). Using the
definition of U :

d(ρV) + pdV = 0 → pdV+ ρdV + Vdρ = 0 (17)

Assuming a short period dt for the change (d → ˙ ) we have:

˙(ρV ) + pV̇ = 0 → pV̇ + ρV̇ + V ρ̇ = 0 (18)

The volume V grows proportionally to a3, and so dV/V = 3da/a, which leads us to the following
equation for the energy density:

ρ̇ = −3(ρ+ p)
ȧ

a
= −3H(ρ+ p) (19)

This equation describes the evolution of the (average) energy density in an expanding universe.
Let’s analyse now some specific cases. If we assume that p = wρ, where w is a constant, we can rewrite
equation 19 as:

ρ̇

ρ
= −3

ȧ

a
(1 + w) (20)

which has the following general solution:ρ = ρ0a
−3(1+w). The evolution of ρ will then depend on which

“substance” rules the evolution of the Universe.

• Matter domination: Collisional matter (e.g. Dark Matter) has no pressure, hence w = 0,
which implies ρm(t) = ρm(0)a−3. Which tells us that the density will simply scale due to the
increase Volume.

• Radiation domination: For radiation w = 1/3, therefore ρr = ρr(0)a
−4. This result can be

understood in the following way: a term a−3 is due to the increased volume and an extra term
a−1 is due to the redshift effect.

• Cosmological constant: By definition ρΛ = const., which results in w = −1, and ρ = −p.
That’s why sometimes the cosmological constant is also (wrongly) referred as “anti-gravity”.

• Curvature k: from the first Friedman equation (eq: 13): ρ ∝ 3k/a2, that gives w = −1/3.

A simple conclusion of this analysis is that DE will always dominate the expansion of the universe
at later times, if there is no cosmological constant, than for non flat universes the curvature will
dominate, otherwise the non-collisional matter component.

The Ω parameter

A common way to describe the contribution of a given component to the total energy density of the
Universe is through its density paramer:

Ωi =
ρi
ρcr

(21)
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where ρcr is the critical density of the universe and it is defined as the density the Universe has in
order to have a flat geometry (K = 0). By definition:

Ωtot = 1− Ωk = Ωm +Ωr +ΩΛ(+Ων) (22)

where the last term Ων is the density of massive neutrinos.
The exact value of ρcr can be easily obtained from the first Friedman equation (eq. 13):

3
ȧ2

a2
= 8πGρ+ Λ = 8πG(ρm+r + ρΛ) = 8πGρcr (23)

where we defined ρΛ = Λ/4πG. From the previous equation we can compute the present value of the
crital density using the Hubble constant:

ρcr(z = 0) =
3

8πG

(

ȧ

a

)2

z=0

=
3H0

8Gπ
= 2.775 × 1011 h2 M⊙ Mpc−3 (24)

the symbol h is called the Hubble parameter and it express the value of H0 in units of 100 km s−1

Mpc−1. Today observations (CMB + Lensing + Hubble telescope) suggest h = 0.72 ± 0.03.
Finally we can rewrite the first Friedmann equation in the following way:

(

ȧ

a

)2

=
8πG

3
ρcr(0)

[

Ωm(0)a−3 +Ωr(0)a
−4 +Ωka

−2 +ΩΛ

]

. (25)
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