
Linear Theory and perturbations Growth

The Universe is not homogeneous on small scales. We want to study how seed perturbations (like the
ones we see in the Cosmic Microwave Background) evolve in an expanding univserse.

The expanding Universe is a key ingredient: expansion si the only “force” gravity has to fight against.
If gravity would be the only force each perturbation will grow and collapse (sooner or later), untill all
the fluctuations will end up in one large object.

Jeans theory

The Jeans theory describes perturbation growth in the linear regime δρ/ρ < 1. Let’s consider a fluid
with pressure p (non relativistic) , density ρ and velocity ~u (let’s say the hubble expantio). The fluid
evolution obbeis to three equations: Continuity, Euler and Poisson.
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Let’s now introduce a small parturbation in our field, a small density bump:

ρ(~r, t) = ρ0(t)[1 + δ(~r, t)] (4)

where ρ0(t) is the average densitu at the time t. Because of the density bump we will also induce
peculiar velocities:
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=

d(a~x)

dt
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The first term (ȧ~x) is the Hubble expantion while the second one ~v(~x, t) it is the peculiar velocity. In
an anologuos way there will be also a peculiar potential φ, defined as Φ = Φ0 + φ.
The perturbated quantities can be used instead of the corresponding “smooth” unperturbed ones in
equations 1, 2 and 3.
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where we introduce the sound speed c2s = ∂p/∂ρ. We will now convert the perturbed equations from
physical (or proper) coordinates to comoving ones in order to make explicit the expantion factor a.
Remember that:
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Then to get the new equation of motions we subtract unperturbed equations from perturbed ones
(and we will omit the subscrit ~x from now on). What we are left with is a new system of equations in
the perturbed quantities δ, v and φ.
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ȧ

a
~v +

1

a
(~v · ~∇)~v = −1

a
~∇φ− 1

a(1 + δ)
c2s
~∇δ (10)

∇2φ = 4πGρ0a
2δ (11)

Now we can linearize these equations by removing second order terms and assuming (1 + δ) ≈ 2
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Finally peculiar velocities can be eliminated with few more algebrical passages, using that 1
a
∂
t (12)

= 0 and ∇(13) = 0 and the poisson equation for the perturbe potential φ: ∇φ = 4πHρ0a
2δ

Negletting again second order terms in δ we arrive at the final equation describing the evolution of a
perturbation in the linear regime:

δ̈ + 2Hδ̇ − 4πGρ0δ −
c2s
a
∇2δ = 0 (14)

If delta is small (δ ≪ 1) we can decompose it in Fourier space and treat each k mode as independent:

δ̈k + 2Hδ̇k +

[

c2sk
2

a2
− 4πGρ0

]

δk = 0 (15)

Equation 15 can have two different types of solutions depending on the sign of the last term, the
one in square brackets.

• If the sign is positive, then solutions for δk are of sinusoidal type, which says that at any given
place, or point in time, the density excess, δk oscillates. The sign of the square-brackets term
is positive when the pressure term, c2sk

2/a2, dominates. The physical interpretation is that the
pressure forces are strong enough to effectively resist gravity. Hence the oscillations.

• If the sign of the term is negative, then δk will have solutions that are not oscillating, but
monotonic in time, for example solutions like hyperbolic sine or cosine are possible. These non-
oscillatory solutions lead to a monotonic increase or decrease in the density excess. The physical
interpretation is that gravity takes over and collapses the density perturbation before pressure
forces can dissipate it. Thus, monotonic increase in δk can result in a bound structure at some
later time.

The dividing line between these two types of behavior is the Jeans scale, when the square-brackets
terms is zero:

c2sk
2

a2
= 4πGρ0 (16)

This defines a scale, usually called the Jeans scale, kJ =
√
4πGρ0ac

−1
s that sets the future evolution of

the perturbation. The corrisponding Jeans length is λJ = 2π/kJ and the Jeans mass is MJ = ρ0λ
3
J .
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Growth of DM perturbations in an Einstein-de Sitter Universe

In the next few sections we will be considering growth of density fluctuations in the dark matter

alone. Because dark matter does not have any pressure of its own, and it does not couple to photons,
the pressure term in the Jeans equation, c2sk

2/a2 , will be ignored. As usual, if we assume E-dS model,
i.e. Ωm = 1 things simplify a lot. Using ρ0 = ρcrit = 3H2

0/8πG and t = 2/3H, eq. 15 and its exact
solution become:

δ̈k +
4

3t
δ̇k =

2

2t2
δk; δk = At2/3 +Bt−1. (17)

where A and B are constants.
For the growing mode (the first of two terms in the solution) δk ∝ a that is, the amplitude of
fluctuations grows proportionately to the scale factor of the universe. This is an important result.
Notice that the growth rate is independent of the value of k. This means that the spatial regions of
the Universe whose δ(~x) is composed of a range of k-modes, each with its own amplitude δk also grow
at the rate ∝ a (from now on we will omit the subscript k in δ). The growth in the linear regime
(in the spatial regions where δ < 1) continues forever in an E-dS Universe. The spatial extent of
structures within which average δρ/ρ ∼ 1 continues to grow, while the density deep inside of these
structures continues to increase well into the δ ≫ 1 regime. The growth of overdense regions occurs at
the expense of the underdense regions, which, in the linear regime experience negative growth (Bt−1).

Growth of DM perturbations in an open, ΩΛ = 0,ΩK 6= 0 Universe

Friedmann equation takes the form,

H2 = H2
0

[

Ωma−3 + (1− Ωk)a
−2

]

(18)

We can assume that during the epoch when curvature dominates, the term Ωma−3 will be negligible
compared to (1 − Ωk)a

−2 so the matter density contribution to the expansion dynamics is tiny, and
can be neglected. The Jeans equation now becomes,

δ̈ + 2Hδ̇ = 0 (19)

From the Friedmann equations we see that when curvature dominates H ∝ a−1, therefore t ∝ a, so
that Ht = 1. With this, the Jeans equation has two solutions,

δ ∝ A× const+Bt−1. (20)

The “growing mode” solution in this case is the least rapidly decaying one, δ ∝ const, and implies
that the amplitude of the density fluctuations in the linear regime is not going to change once curvature
comes to dominate the global dynamics of the Universe. In an open Universe no growth of the density
fluctuations in the linear regime took place after the curvature terms prevales on the mass one. This
effect is sometimes called the “freezing of the fluctuations”.

Growth of DM perturbations in a flat, ΩΛ 6= 0,ΩK = 0 Universe

Friedmann equation takes the form,

H2 = H2
0

[

Ωma−3 +ΩΛ

]

(21)

In this model, just like in the open Universe, growth of density perturbations will virtually stop
when Λ begins to dominate, i.e. when Ωma−3/ΩΛ < 1. The equation then becomes the same as eq.
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19, but the solutions are different because H and t now have a different relation connecting them:
from Friedmann H2 = H2

0ΩΛ, so Hubble parameter is constant, and the solutions are:

δ ∝ A× const+B exp−2Ht . (22)

WARNING: It is important to note that here we are talking about growth shutting off on linear
length scales. At the present epoch in our own Universe these are scales larger than about 20-40 Mpc,
i.e. scales of superclusters, voids, and larger. The shutting off of growth on these scales does not
mean that the dynamical evolution within non-linear structures δ ≫ 1 that are already assembled has
stopped: these objects continue to evolve until they virialize. Also, interactions between objects, like
galaxy collisions, etc, can stimulate additional dynamical evolution in mildly non-linear regions.

Growth of sub-horizon DM perturbations during radiation dominated epoch

During radiation domination the largest contribution to the energy density is from photons, which,
being relativistic, do not cluster. That means that the last term in eq: 15 is 0 (δtot ∼ δphot ∼ 0). The
Jeans equation reduces to:

δ̈ + 2Hδ̇ = δ̈ +
1

t
δ̇ = 0 (23)

The second step follows because a ∝ t−1/2 during this epoch. This equation has two solutions:

δ ∝ A× const+B ln t. (24)

Perturbations in particles not coupled to photons (like CDM) grow at best logarithmically during this
epoch, which is not very fast at all. Remember that baryons during this epoch are tightly coupled to
the photons and so their density perturbations are well represented by an oscillating solution to eq.
15.

Growth of superhorizon DM perturbations

In general an horizon is surface you cannot see beyond. Let’s define a sphere drawn around an observer
such that light from sources on the sphere, if emitted at t = 0 will just reach the observer now at
t = t0. In formulas

dH =

∫ t0

0

dt

a(t)
=

∫ r0

0

dr

(1− r2/k)
(25)

The particle horizon is defined as DH = dHa(t), which is the proper radius corresponding to dH . If
a(t) ∝ t2/[3(1+w)] the particle horizon is finite an equal to

DH = [3(1 + w)/(1 + 3w)]t (26)

For matter and radiation dominated era this translates into DH = 3t and DH = 2t, respectively. This
means that the region encompassed by DH grow with time, and, more important, grows faster than
the rate at which two observers are carried away from each other due to cosmic expantion. More and
more region will be in causal contact as time goes by.

If a fluctuation has a scale larger than the horizon at that time (i.e. it is outside the horizon), it
does not care about microphysical process like fluid pressure, but it simply evolves only according to
General Relativity (Friedman equations).

Let’s assume for semplicity Ωtot = 1, then we have:

H2 =
8πG

3
ρ̄ (27)
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where ρ̄ is the background density. An overdensity δρ will then induce a positive curvature in the
local space (k > 0).

H2 =
8πG

3
(ρ̄+ δρ)− k

a2
(28)

then:
δρ

ρ
=

ρ− ρ̄

ρ̄
=

(k/a2)

8πGρ̄/3
∝ (a2ρ̄)−1 (29)

This implies that super horizon fluctuations will be always growing like δ ∝ a2 and δ ∝ a if radiation
or matter dominates, respectively.

Power Spectrum and Transfer Function

One simple way to describe the perturbation of a smooth medium is thorugh its Power Spectrum. If
the quantity δρ(~r) is reasonable continuous we can decompose it into the Fourier space.

δρ(~r) =

∫ inf

− inf
δ~k exp(−i~k · ~r)d3k (30)

Isotropy tells us that the Universe is the same in all directions so we can simply assume that δ~k is
just a function of |k|. Then the power spectrum is defined as:

P (k) ≡ |δk|2 (31)

A foundamental quantity in cosmology is the root mean square (r.m.s.) of the fluctuations on a given
scale R:

σ2
R ≡ 〈|δρ

ρ
|2〉R ∝

∫ inf

− inf
|δk|2k2|Wk|2dk (32)

where Wk is the fourier transform of a spatial filter (window function: i.e. top-hat or gaussian) which
weights regions at distances larger than R less than the central ones.
Associated with the density variance on a scale R there is a mass variance σ2

M , where M = 4/3πρ̄R3.
Usually the primordial power spectrum is assumed to be a power law of the form P (k) = akn.

Power law shape is what is expected for a scale-free force like Gravity. Moreover inflation predicts
such a spectrum with n = 1.

The constant A can be determined through observations, by measuring σR from galaxy distribution.
For historical reasons, the variance is measured on a scale of 8 Mpch−1, the associated parameter is
called σ8 and fixes the normalization of the power spectrum.
For P (k) ∝ kn we have that:

〈|δρ
ρ
|2〉R ∝ kn+3 (33)

Since k ∝ λ−1 and M ∝ λ3, σM = M−α, where α = n/6 + 1/2. Since σ8 is computed on a large
scales, that today is still linear, its evolution is the same as a linear perturbation. Therefore σ8 ∝ a
in the matter dominated era.

The Transfer Function

As time goes by the universe Horizon grows faster than the Hubble expantion. This means that larger
and larger scales will enter the Horizon. Because of the different rates of growth of perturbations
inside and outside the Horizon, the power spectrum, changes shape compared to its original primordial
Harrison-Zeldovich (n = 1) spectrum, P (k) ∝ k
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These changes are described by the so-called transfer function which relates the primordial spec-
trum to the processed one. If we consider DM only, there exists a special epoch relevant to the
evolution of fluctuations in DM. That epoch is matter-radiation equality (MRE, or just equality), and
there will be a special length scale as well, corresponding to the size of the horizon at zeq.

Lengthscales less than Rhor,eq would have entered the horizon before zeq , and so would have
undergone a period of slow (logarithmic) growth, whereas scales larger than Rhor,eq would have not
experienced such a phase. Hence the processed power spectrum has a (smooth) break at Rhor,eq , and
is no longer scale-free. The original Harrison-Zeldovich shape ∝ k is retained on the longest scales
only.

To sum up transfer function in a dark matter dominated universe: long wavelength modes always
grow well, because when they make the transition from being super-horizon to sub-horizon the Universe
is already matter dominated, and so they never have to go through the growth suppressing period of
being sub-horizon during radiation-domination. Unlike smaller length scales.

The more time a given scale has to spend in the sub-horizon-radiation-dominated growth purgatory
the smaller its amplitude is going to be. So the smallest scales are most severely suppressed.
The processed spectrum P (k, z) is usually parametrized in the following way:

P (k, z) = AknT 2(k, z) (34)

where T (k, z) is the transfer function, which depends on the cosmological parameters: Ωm,ΩΛ,Ωr,Ωb

ad well as on the equation of state of Dark Energy, w(t).

The Zel’dovich Approximation

In the linear regime the growth of a perturbation can be written as:

δ(x, a) = D(a)δi(x) (35)

where δi(x) is the density perturbation at some initial time ti, and D(a) is the so called “linear growth
factor” and it is normalized such that D(ai) = 1. For example for an E-dS universe D(a) = a.
If we substitute eq 35 into the poisson equation we obtain:

Φ(x, a) = D(a)Φi(x) where ∇2Φi = 4πGρ0a
2δi(x) (36)

We can substitute this result in the linearized Euler equaiton (eq: 13 v̇ + (ȧ/a)v = ∇Φ/a) which give
us:

v = −∇Φi

a

∫

da

dt
. (37)

Because by definition D(a) satisfies the fluctuation growth equation, δ̈ + (2ȧ/a)δ̇ = 4πGρ0δ so that
∫

(D/a)dt = Ḋ/4πGρ0a, equations 37 can be written as:

v = − Ḋ

4πGρ0a2
∇Φi(x), (38)

which shows that the peculiar velocity is proportional to the current gravitational accelleration. Since
v = aẋ, integrating the above equation once again and to the first order of pertubations, so that
∇Φi(x) can be replaced by ∇Φi(xi) (with xi the initial position of the mass element at x), we obtain

x = xi −
D(a)

4πGρ0a3
∇Φi(xi). (39)
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This formulation of linear perturbation theory, which is applicable to a pressurless fluid, is due to
Zeldovich (1970). It is a Lagrangian description that specifies the growth of structure by giving the
displacement x− xi and the peculiar velocity v of each mass element in terms of the initial position
xi.

The Zeldovich approximation is extremely useful to set up the inital conditions of numerical sim-
ulations. What we want is to start with our mass elements (hereafter defined as particles) at rest
on a regular grid and then compute their peculiar velocity and displacement according to the power
spectrum at that redshift.

According to Zeldovich approximation, (which is valid in the mild linear regime, δ < 1) the
displacement of a particle can be written as:

x = xi −
D(a)

4πGρ0a3

∑

k

Sk(xi) (40)

and its peculiar velocity as:

v = − Ḋ

4πGρ0a2

∑

k

Sk(xi) (41)

where the displacement vector S is related to the potential Φ and the power spectrum of the fluctua-
tions P (k):

Sk(xi) = ∇xΦk(xi), Φk =
∑

k

ak cos(kxi) + bk sin(kxi) (42)

where a and b are gaussian random numbers with the mean zero and dispersion σ2 = P (k)/k4:

ak =
√

P (k)
Gauss(0, 1)

k2
, bk =

√

P (k)
Gauss(0, 1)

k2
. (43)

The normalization of the Power Spectrum (e.g σ8) defines the normalization of the fluctuations.
In order to set the initial conditions, we choose the size of the computational box L and the number

of particles N3. The phase space is divided into small equal cubes of size 2π/L. Each cube is centered
on a harmonic k = 2π/L × i, j, k, where i, j, k are integer numbers with limits from zero to N/2. We
make a realization of the spectrum of perturbations ak and bk, and find displacement and momenta
of particles with xi = L/N × i, j, k using the equations 40 and 41. Here i, j, k = 1, N .
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