
Beyond the Linear Regime

Our next step is to look at regions with δ ≫ 1. As one can imagine the dynamics of these regions
can be complicated, so we will make simplifying assumptions. Let’s consider an overdense spherically
symmetric piece of the Universe, and let the background cosmology be E-dS (Ωm = 1.0). Imagine
dividing up the region into spherically concentric shells. The density increases inward, so that inner
most and densest regions will collapse first, then outer regions, etc. The equation of motion for a
particle at radius r is:

r̈ = −
GM

r2
(1)

Where M = M(< r) is the mass within r. A general parametric solution to this equation is

r = A(1− cos θ) and t = B(θ − sin θ) (2)

The angle θ is sometimes called the evolution angle; it is a surrogate for time; constants A and B are
to be determined. When θ = π the particle reaches its maximum distance from the center, rmax ,
therefore:

A = rmax/2 (3)

This radius is the turnaround, and it occurs at later cosmic times for shells further out. In other
words, innermost shells are the first ones to turnaround and start collapsing. A relation between A
and B can be established if we plug in r from the previous equation into the equation of motion for
r:r̈ = −GM

r2
, this relation leads to the value of B:

A3 = GMB2
← B =

(

r3max

8GM

)1/2

(4)

Let us calculate average density within a given shell of the sphere, ρ(t) = 3M/4πr3. If we use the
results of eq: 2 we obtain:

ρ(t) =
3

4πGt2
(θ − sin θ)2

(1− cos θ)3
=

9

2
ρ0

(θ − sin θ)2

(1− cos θ)3
. (5)

One can show that for small values of θ, i.e. early on, the density scales as t−2 , which is the same as
for the average density in a E-dS universe.

Density at turnaround

At turnaround, θ = π, hence we have that:

ρ

ρ0
=

9π2

16
≈ 5.5, or δTA ≈ 4.5 (6)

This is an important result. So an initially small perturbation grows, first linearly, then faster. If
you follow any one particle its velocity with respect to the center of the bump will steadily decrease
compared to the Hubble flow. At some point it stops - that’s turnaround - and starts to collapse. The
turn-around marks the time when the material at that radius decouples from the Hubble flow; from
then onwards that material proceeds with its own dynamical evolution. The turn-around radius (the
radius within which the average overdensity is 5.5) increases with time, so collapse of objects proceed
from inside out.
After turnaround our approximation of no-shell crossing breaks down, and the θparametric model we
have used so far is no longer valid.
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Density at virialization

Let us not pay attention to the ensuing messy process of halo virialization; suppose next time we
look at the galaxy all the matter has settled, and the galaxy attained a state of (relative) stability:
the potential has stopped evolving. Now, what is the density inside the portion of the sphere that is
virialized?
The virial theorem tells us that for virialized objects:

KE = −
1

2
PE (7)

where KE and PE are the total kinetic and potential energy of the dark matter halo, respectively. At
turnaround all the energy is in the form of potential energy:

Etot = PE(rmax) = PE(rTA) (8)

while at virialization (using the virial theorem) we have

Etot =
1

2
PE(rvir). (9)

From equations 8 and 9 we can derive that rvir = 0.5rTA. Which implies that ρvir = 8ρrTA
. But this

is not the whole story. What we want to compute is the overdensity of a perturbation at virialization,
what we want is δ(Rvir). To compute this quantity we have to consider that also the background
density evolved from tTA and tvir. Roughly, it will take as much time for the structure to collapse
as it did to attain turnaround. In E-dS universe r ∝ t2/3 and ρ ∝ t−2. Since the time doubled since
turnaround, the background density dropped by a factor of 4. This implies that:

ρvir
ρb

= ∆vir = 8× 4×
ρTA

ρ0
= 32× 5.5 = 176 ≈ 200 (10)

This (over)density threshold is usually referred as the virial density, and it is model and redshift
dependent. A useful fitting formula to determi ∆vir as been porposed by Brian & Norman (1998).
For a flat universe, (ΩK = 0):

∆vir = 18π2 + 82x− 39x2 (11)

while for a Universe without cosmological constant ( ΩΛ = 0, and arbitrary geometry):

∆vir = 18π2 + 60x− 32x2 (12)

where x = Ω(z)− 1 and Ω(z) = Ωm(1 + z)3/E(z)2. The function E(z) describes the evolution of the
Hubble parameter and is defined as:

E(z)2 = (100hE(z))2 = Ωm(1 + z)3 +ΩΛ +ΩK(1 + z)2 (13)

So an ob ject whose average density is ∆vir is considered to be virialized. As time goes on larger
and larger regions become virialized, ans the boundary enclosing an average overdensity of ∆vir grows
larger.

Linear density at virialization

It is also possible to compute the linearized density for virialization. This density can be described as
the density that a perturnation δ would have if it will always stay in the linear regime.
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Equation 2 tells us that the minimum radius is achieved for θ = 2π. Using the relation between linear

density and time (ρ(t) = 1/(6πGt2)) and the second part of eq: 2 we have:

δc =
ρL
ρb
− 1 =

3

5

(

3

4

)2/3

(θ − sin θ)2/3 = [θ = 2π] = 1.686 (14)

This density threshold will be useful for the so called Press & Schecter approach, which we will describe
next.
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out of the Hubble flow, and via gravitational instability. Stars, planets, giant molecular clouds, etc.
are not included in this category because they did not form out of the Hubble flow—they formed
inside of galaxies, in regions of space that were dynamically dominated by self-gravity of the parent
galaxy, and completely oblivious to the Hubble expansion. The following analysis applies to dark
matter halos exclusively. However, in our Universe it appears that dark matter halos of all masses
are occupied by some sort of light emitting matter: DM halos with M<∼1012M! are occupied by
individual galaxies (in general, one galaxy per halo), M ∼ 1013M! DM halos are occupied by
groups of galaxies, and M>∼1014M! DM halos are occupied by clusters of galaxies (again, usually
one cluster per halo). So the analysis in effect, applies to galaxies, groups and clusters.

5.2 Mass function of collapsed objects

On average, the distribution of mass is assumed to be homogeneous and isotropic. Let the rms
dispersion in mass (or density) in spheres that, on average, contain M̄ , and have radius R3 =
M̄/[(4/3)πρ̄], (ρ̄ is the average mass density at that epoch) be

σM =
〈(M − M̄)2〉

M̄2
∝ M̄−α, (29)

α is related to the power spectrum index, α = n/6 + 1/2, and P (k) ∝ kn. Since α is positive rms
dispersion in mass decreases with increasing scale. This makes sense because on small scales the
Universe is lumpy, but gets smoother on large scales. Since the amplitude of δ grows with time, so
does the amplitude of σM : σM ∝ t2/3 in an Einstein-de Sitter cosmology.

At any given time there will be regions in space that are overdense compared to others; these
will accrete surrounding particles to form denser objects, which proceed to collapse after they have
reached critical overdensity, δ ∼ 4.5. As time goes on more and more particles get caught in
collapsed objects. In fact, there will be collapsed objects that become ‘ingested’ into larger objects
that are also collapsed. For example, already formed galaxies become ‘particles’ incorporated into
collapsed clusters of galaxies. In other words, we have a hierarchy of objects. In spite of the fact
that an ever increasing amount of mass in the Universe becomes trapped in collapsed objects there
are still areas of linear growth in the Universe, but typically you have to go to larger and larger
spatial scales to find these. Linear regimes, i.e. where fractional overdensity δ does not exceed
∼ 1, often surround objects that are just decoupling from the Hubble flow and are beginning to
collapse. So linear formalism approximately applies to spatial scales where collapsed objects are
just forming.

Consider many randomly placed volumes of size V ∝ R3 ∝ M̄ . Each one of these is characterized
by an overdensity δ, and the volumes are large enough so that typical δ’s are not too large. Press
and Schechter argued that in such a case δ’s are Gaussian distributed:

p(δ, V ) =
1

(2πσ2
M )1/2

e−δ2/2σ2

M =
1

(2πσ2
M )1/2

e−x2

, x =
δ√
2σM

(30)

At a given time perturbations in the high overdensity tail of the Gaussian are just collapsing or
have already collapsed. The fraction of collapsed volumes of all masses is

P (δ, V ) =
∫ ∞

δc

p(δ, V )dδ =
1

π1/2

∫ ∞

xc

e−x2

dx, (31)

The threshold δc = 1.69 is the linearized fractional overdensity4, independent of the epoch. Lin-
earized means that it is the overdensity collapsed objects would have had had they not gone

4The corresponding non-linear overdensity is 200. This is the actual overdensity.
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non-linear. The reason we have to use linearized δ here is because we start with the linear theory
and eq. 30 is valid when density fluctuations are small. For objects just collapsing the exponent in
eq. 31 becomes:

xc
2 =

δc
2

2AM−2α
=

2AM$
−2α

2AM−2α
=

( M

M$

)2α
, (32)

where we have replaced δc with a new parameter, M$.
The fraction of mass volumes that are just becoming bound, i.e. are just forming at that epoch

is P (M)− P (M + dM), it is the fraction of all objects that have formed by that epoch, minus the
fraction of objects that have formed during previous epochs:

P (M) − P (M + dM) =
dP

dM
dM =

dP

dx

dx

dM
dM =

1

π1/2
e−x2

c α
Mα−1

M$
α dM (33)

To convert this into the fraction of mass contained in these objects per unit volume of space we
have to multiply by ρ̄, and to get number density of objects per unit volume we divide by M̄ . This
gives us the mass function,

n(M) dM =
dP

dM
dM

ρ̄

M
=

αρ̄

π1/2

1

M2

( M

M$

)α
e−x2

c dM (34)

The final form of the mass function is

n(M) dM =
αρ̄

π1/2

1

M$
2

( M

M$

)α−2
e−(M/M!)2α

dM (35)

This is the mass function of objects just reaching virialization at time t. The units on both sides
of the “=” sign are: per unit volume. The PS mass function is a power law in mass with an
exponential cut-off at masses above M$. The mass function tells us that massive objects are rearer
than less massive objects. M$ is time dependent because of σM . As time progresses larger and
larger mass scales reach overdensities necessarily for collapse, and so more massive objects collapse
later than less massive objects: galaxies form before clusters, etc.

The derivation of n(M) dM made many assumptions, and many relevant effects were not taken
into account at all.5 So it is surprising that the derived mass function agrees very well with the
results of high-resolution computer simulations.

6 Clustering of dark matter halos on large scales

In the previous sections we dealt with the mass function of dark matter halos, spanning the mass
range from low mass galaxies, to groups and clusters of galaxies. That is, distribution of dark
matter halos in mass. We now turn to the distribution of galaxies in space (clustering), and the
motion of galaxies on scales >∼ few Mpc (dynamics). Both clustering and dynamics can tell us
about the global properties of the Universe: Ω’s and the shape and amplitude of the matter power
spectrum. The hope is that both types of methods give the same results for the parameters, and
in fact they do, at least in the general sense. (The details sometimes do not agree; measument
errors are a major cause of this.) In other words, we are pretty sure we have the big picture of how
structure evolved in the Universe, and all the aspects of the observed large scale structure (LSS)
amount to a self-consistent picture.

5One of the main weaknesses of Press-Schechter formalism is that it does not treat objects collapsing in underdense
regions, i.e. regions with δ < 1. Such regions, voids, do form dark matter halos, but PS ignores them completely.

One must correct for this ‘by hand’. Since about half of the total mass of the Universe is contained in underdense
regions, eq. 35 must be multiplied by a factor of 2. This is a handwaving argument, but one can also show that using
more convincing lines of reasoning.
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