Gravitational Wave Astrophysics at the NBIA

Daniel J. D'Orazio Johan Samsing Martin Pessah Bin Liu Chris Tiede Alejandro Vigna-Gomez Alessandro Trani

PhD Students: Gaia Fabj Marcela Grcic Kai Hendriks David O'Neill

The Electromagnetic Sky: Conventional Astrophysics

The Gravitational Wave Sky? Gravitational Wave: Messenger of the gravitational field

Generated by ~accelerated mass distributions Most extreme example: Black Hole Binaries

2015 Discovery of Gravitational Waves

Masses in the Stellar Graveyard

in Solar Masses

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Open Question: How did these form!?

'Field'? 'Dynamically'? 'Other'?

Work being carried out at the NBIA by: D. D'Orazio, J. Samsing, B. Liu, A. Vigna-Gomez, A. Trani, +

Movie from Johan Samsing

Dynamical Formation in Gas Disk (AGN channel)

Project on (Field) Formation of Black Hole Mergers

***Background:** Internal "Mixing" during stellar evolution is still uncertain and can be parameterised by theoretical models. How does this affect the outcome of binary star evolution and so BBH formation?

*Question: Do uncertainties in single star evolution allow yet-unimagined BBH formation channels?

***Task:** Implement prescriptions for mixing effects in binary stellar population synthesis code: COMPAS (<u>https://compas.science/; https://github.com/TeamCOMPAS/COMPAS</u>)

The Electromagnetic Sky: Conventional Astronomy

The Gravitational Wave Sky

The Low Frequency Gravitational Wave Sky

LISA

Laser Interferometer Space Antenna

2.5 Million km arms!

Planned Launch: 2034

Pulsar Timing Arrays:

Black Holes in the Universe

Stellar Mass Black Holes

Supermassive Black Holes

~100 Thousand to 10 Billion Solar mass black hole

Merger of two: High frequency GWs, LIGO Merger of two: Low frequency GWs, LISA and PTAs

GALAXIES MERGE, BUT DO THE BLACK HOLES (AND HOW)?

Step 3: *Gravitational Waves* merge the supermassive black holes

GALAXIES MERGE, BUT DO THE BLACK HOLES (AND HOW)? HOW DO WE FIND OUT?

Step I: Galaxy merger
 forms a supermassive black
 hole binary

* **Step 3:** *Gravitational Waves* merge the supermassive black holes

GALAXIES MERGE, BUT DO THE BLACK HOLES (AND HOW)? HOW DO WE FIND OUT?

Population Predictions

How does gas affect the orbit and drive the black holes to merge?

Discovery in EM spectrum

How does the accretion of gas make the binary EM bright?

Project in Numerical Hydrodynamics

***Background:** Studies of gas-driven binary orbital evolution fix the binary orbit and calculate how gas forces would change the orbit. For a large enough disk mass this fixed-orbit approximation breaks down. We need a binary that reacts in real time to the gas forces to explore the above question.

*Question: When does back reaction onto the binary orbit affect the problem?

*Task: Implement a "Live Binary" into the DISCO hydrodynamics code.

People

Martin Pessah, Johan Samsing, Daniel D'Orazio <u>mpessah@nbi.ku.dk</u>, jsamsing@nbi.ku.dk, <u>daniel.dorazio@nbi.ku.dk</u>

Research Topics

* Theory at interface with observations: pencil-paper and numerics

- * Gravitational Waves and Black Hole Astrophysics
- * Many-body (relativistic) gravitational dynamics
- * Gas Accretion, Gravitational Lensing

Open Questions

* How do black hole binaries (across the mass scale) form and merge?
* How do we find evidence for supermassive black hole binaries?
* Where/How do the stellar mass black hole binaries form/merge?
* What Electromagnetic and Gravitational Wave observables can we predict and use to find the answers?