

Condensed matter physics

Michele Burrello michele.burrello@nbi.ku.dk

Berislav Buca berislav.buca@physics.ox.ac.uk

Condensed Matter Theory and QDEV

Where are we?

More is different!

P. Anderson

The challenge of many-body physics is to master the complexity of thermodynamic systems and describe their emergent properties.

More is different!

P. Anderson

The challenge of many-body physics is to master the complexity of thermodynamic systems and describe their emergent properties.

More is different!

P. Anderson

The challenge of many-body physics is to master the complexity of thermodynamic systems and describe their emergent properties.

From High Energy....

From High Energy....

• Free kick (vs ENG) by Damsgaard: $\sim 10^{21} \text{ eV} \sim 1.2 \times 10^{25} \text{K}$

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21} \text{ eV} \sim 1.2 \times 10^{25} \text{K}$
- LHC: $\sim 1.3 \times 10^{13} \text{ eV} \sim 1.5 \times 10^{17} \text{K}$

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21}~{\rm eV} \sim 1.2 \times 10^{25}{\rm K}$
- LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7 \ \mathrm{K}$

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21} \text{ eV} \sim 1.2 \times 10^{25} \text{K}$
- LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7 \ \mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21}~{\rm eV} \sim 1.2 \times 10^{25}{\rm K}$
- \bullet LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7~\mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$
- Everyday life: ~ 300 K

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21}~{\rm eV} \sim 1.2 \times 10^{25}{\rm K}$
- LHC: $\sim 1.3 \times 10^{13} \ \text{eV} \sim 1.5 \times 10^{17} \text{K}$
- \bullet Sun core: $\sim 1.5 \times 10^7~\mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$
- ullet Everyday life: $\sim 300 {
 m K}$
- Liquid Nitrogen: $\sim 77 \mathrm{K}$

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21}~{\rm eV} \sim 1.2 \times 10^{25}{\rm K}$
- LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7 \ \mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$
- \bullet Everyday life: $\sim 300 \mathrm{K}$
- Liquid Nitrogen: $\sim 77 \mathrm{K}$
- ullet Liquid Helium Superconductors: $\sim 4 {
 m K}$

Kamerlingh Onnes 1911

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21} \text{ eV} \sim 1.2 \times 10^{25} \text{K}$
- LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7~\mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$
- Everyday life: ~ 300 K
- Liquid Nitrogen: $\sim 77 \mathrm{K}$
- ullet Liquid Helium Superconductors: $\sim 4 {
 m K}$
- QDEV dilution fridges: 2×10^{-2} K

From High Energy....

- Free kick (vs ENG) by Damsgaard: $\sim 10^{21}~{\rm eV} \sim 1.2 \times 10^{25}{\rm K}$
- LHC: $\sim 1.3 \times 10^{13}~\text{eV} \sim 1.5 \times 10^{17} \text{K}$
- Sun core: $\sim 1.5 \times 10^7~\mathrm{K}$
- Sun surface: $\sim 5.8 \times 10^3 \mathrm{K}$
- Everyday life: ~ 300 K
- Liquid Nitrogen: $\sim 77 \mathrm{K}$
- ullet Liquid Helium Superconductors: $\sim 4 {
 m K}$
- QDEV dilution fridges: 2×10^{-2} K
- Ultracold atoms: 10⁻⁸K

Superconductivity

Superconductivity

Superconductor-Insulator phase transition in Josephson Junctions array

Superconductivity

Superconductor-Insulator phase transition in Josephson Junctions array

Quantum simulations

Superconductivity

Superconductor-Insulator phase transition in Josephson Junctions array

Quantum simulations

Topological Phases of Matter Majorana devices @ QDEV

Josephson Junctions array in planar geometries

- Superconducting islands connected by Josephson Junctions
- Quantum engineering of effective Hamiltonians
- Possibility of studying a variety of physical phenomena such as phase transitions, frustration and vortex dynamics

Josephson Junction

Kagome lattice of Josephson Junctions

Topological phases of matter

Fractional quantum Hall:

Robustness against local perturbations

Topologically protected quasiparticles

Topological phases of matter

Fractional quantum Hall:

Robustness against local perturbations

Topologically protected quasiparticles

Quasiparticles with fractional charges and anyonic statistics

Methods and techniques

Analytical methods:

- Advanced quantum mechanics
- Quantum field theories
- Feynman path integral
- Gauge theories
- ...

Numerical methods:

- Exact diagonalization
- DMRG and tensor networks
- Machine learning
- ...

Condensed matter courses

IV year

Block 2:

- Condensed matter physics 2 (Course, 7.5 ECTS)
 Karsten Flensberg
- Condensed matter theory 1 (Course, 7.5 ECTS)
 Brian Andersen

Block 3:

Condensed matter theory 2 (Course, 7.5 ECTS)

Jens Paaske

Block 4:

Advanced condensed matter theory (**PUK: Study Project**, 7.5 ECTS)

Michele Burrello

Visit: https://absalon.instructure.com/courses/63923

Enroll: https://absalon.instructure.com/enroll/AHD8JC (Enroll beginning of block 3)

CMT @ NBIA

see also nbi.ku.dk/english/research/condensed-matter-physics/condensed-matter-theory/

Michele Burrello michele.burrello@nbi.ku.dk

Berislav Buca

berislav.buca@physics.ox.ac.uk

CMT @ NBIA

see also nbi.ku.dk/english/research/condensed-matter-physics/condensed-matter-theory/

Michele Burrello michele.burrello@nbi.ku.dk

Berislav Buca

berislav.buca@physics.ox.ac.uk

Other CMT professors:

Jens Paaske
Karsten Flensberg
Brian Andersen
Per Hedegård
Constantin Schrade
Andreas Kreisel
Evert van Nieuwenburg

NBIA CMT juniors

Matteo Wauters

Me Ch

Morten Christensen

Ida Nielsen

Lorenzo Maffi