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Graphs are everywhere!
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Heterogenous graph-structured data are non-Euclidean data

https://graphdeeplearning.github.io/project/spatial-convnets/
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Graph/Geometric Deep Learning is also going everywhere!
Publications in each year. (Criteria: see below)
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Graph-based ML has taken off in the past 3-4 years

(From dimensions.ai)
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Representation Learning with GNNs: Overview

® Motivation
Basics

@® Spectral & Spatial GNNs
ChebyNet
GNNs w/wo Self-Attention

® Graph Representation Learning
Self-Supervised GNNs
Conditional Graph Generation

@ Summary
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Graphs as data structures

Chemical Graph Adjacency
structure representation matrix

Yi | %
Y| Z
i
ev
Yn &

Graph Notations

Consider a graph G = (X, A, E) with N nodes comprising F features per node: X € RV*F
and adjacency matrix A € {0, 1}"*" and edge attributes E € REXV*N,
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One slide introduction to Deep Learning

Observed data  {G1,G2,...,Gn} € G, G : X, AjE;

Labels / Targets {y1,¥2,...,yn} €Y
Decision functions/ Models  go(-): G — Y

go(+) can be any DL model

0 are the trainable parameters; |0] >> N

® Qver-parameterised, non-linear function approximator

Supervised training uses large labelled datasets
® Gradient descent based optimisation

® Multi-layered perceptrons, Convolutional/Graph neural networks, Transformers...
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Representation Learning with GNNs: Overview

@® Spectral & Spatial GNNs
ChebyNet
GNNs w/wo Self-Attention
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How to perform Convolution on Graphs?

Consider a signal operating on the nodes, X € RN and a filter gg parameterized by © € RV, the
graph convolution is given as:

80 * X = (1)
where, ® = (¢o, d1...dn—_1) € RN*N are the orthogonal eigenfunctions forming the Fourier basis

Graph Laplacian

For a graph, G with adjacency matrix A € RV*N: = /«r”*"/(’nl"’l
the graph Laplcian is simply given as: ﬁ | W NI

L—_D_A ’
D € RV*N is the degree matrix with

Dii = Zj A,'j

Graph

with eigenvalues in the diagonal matrix A =
diag(Xo, A1, ..., An—1)

Figure from Geometric deep learning: Going beyond Euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, Pierre Vandergheynst 2016
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Approximating Convolution on graphs with Chebyshev polynomials

Why the approximation?

Eigen decomposition of Graph Laplacian is expensive! Scales poorly with number of nodes

Recursive approximation with Chebyshev coefficients yields the popular spectral graph
convolution method: ChebyNet!

go x X = (9go)(®"X) ~ Y 0k Tk(L)X (3)

with L = 52—L — Iy and Chebyshev coefficients . “~°

1Def"ferrard, Michaél, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized .
spectral filtering. Advances in neural information processing systems 29 (2016): 3844-3852.
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Overview of ChebyNet: CNN for Graphs
(but in spectral domain)

Input graph signals Feature extraction Classification Output signals
e.q. bags of words —P  Convoutionallayers P Fuly connected layers P eg.labels

Graph signal filtering *’ }l Graph coarsening
1. Convolution ® f. 3. Sub-sampling
2. Non-linear activation % 4, Pacling
(]

0=A1 <A< gy,

Figure 1: Architecture of a CNN on graphs and the four ingredients of a (graph) convolutional layer.

Defferrard et al. 2016
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Graph Representation Learning with GNNs: Overview

® Motivation

@® Spectral & Spatial GNNs

GNNs w/wo Self-Attention

® Graph Representation Learning

@ Summary
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Further approximation of ChebyNet yields the class of Spatial GNNs

Starting with Chebyshev approximation:
K—1
go *XzZOka(f.)X (4)
k=0
With K = 2, Amax = 2, the graph convolution operation becomes:
go * X = X + 6;LX (5)
go * X &~ 9(D~1/2AD~1/2X) (6)
with §g = —601, A = A + 1. More generally, for input X € RVXF and weight matrix © € RF*L:
H=D"Y/2AD~/2xe (7)

Stacking multiple of these layers with non-linearities yields the class of node GNNs?!

2Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks.”
arXiv preprint arXiv:1609.02907 (2016).
Note: Chebyshev polynomial Ty (y) of order k is given by the recurrence: Ty(y) = 2yTx_1(y) — Tk_2(y) with
To=1,Ti=y

Slide 12 — Raghavendra Selvan — Representation Learning using Graph Neural Networks — May 2, 2023



UNIVERSITY OF COPENHAGEN

GNNs update states of nodes based on neighbourhood

Graphically, H = D~/2AD~'/2X® means:

Layer 1 Layer 2
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GNNs when seen from a node’s point of view

| ® For a node i € V with neighbours N; the GNN operation in
layer-{ is given as:

(0) _ £2—1
h) = INIZh (8)

JEN;

with hfo) = x; and Oy are trainable parameters.
® Aggregation of transformed neighbouring node features
® M-layered GNN provides information from M-hops away!

® A form of learnable message passing!
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Graphical notation for Graph Convolution Network

£+1
hi

Figure 6: GCN Layer Figure 7: GraphSage Layer

Dwivedi et al. 2022 Benchmarking Graph neural networks
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Graph Attention Network pays differential attention to neighbours

Petar Veli¢kovi¢ et al. 2018, Graph Attention Networks
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Graph Attention Network pays differential attention to neighbours

Petar Veli¢kovi¢ et al. 2018, Graph Attention Networks
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Graph Attention Networks

hSZ) =0 Z Ck,‘j@ehf71 (9)
iEN

xK
Heads

Figure 8: GAT Layer
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Representation Learning with GNNs: Overview

® Motivation

@® Spectral & Spatial GNNs

® Graph Representation Learning

@ Summary
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Representation Learning is Compact Feature Learning

Formalizing representation learning:

“Learning representations of the data that
make it easier to extract useful information
when building classifiers or other predictors.”

1

2-dLatent space

2 o

h=gs(2) (10)
z = fo(x) € RF (11)

h are usually psuedo-labels, z can then be used in
any downstream task to predict, y.

Also, interesting for graphs:
® Access meaningful vector representations of graphs

® Many applications: Graph similarity, graph matching, graph generation

[1]Representation Learning: A Review and New Perspectives. Yoshua Bengio, Aaron Courville, Pascal Vincent. 2014
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. Mehdi Noroozi, Paolo Favaro. 2017
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Self-Supervised GNNs

® Pseudo-labels derived graph data

® |abels can be derived from:
X € RVXF A e [0, 1]V*N E €
]REXNXN

- Masking node features:
h=M-X,M ¢ {0,1}NVxF

- Noisy edges:
h =0.5-A+N,N € [-0.5,0.5]V*<N

® Reconstruction with undercomplete
autoencoders
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Self-Supervised GNNs

® Pseudo-labels derived graph data

/
® |abels can be derived from: % \l
X € RVXF A €0, 1]V<N E € .
RE XN : Encoder <l Q’) Decoder
. <If £!,

- Masking node features:

h=M.X,M e {0,1}V*xF
- Noisy edges: X, <I/
h =0.5-A+N,N € [-0.5,0.5]V*N

® Reconstruction with undercomplete X,
autoencoders
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Self-Supervised GNNs

® Pseudo-labels derived graph data

® |abels can be derived from:
X e RVXF A e [0, 1]V*NE €
REXNXN

- Masking node features:
h=M-X,M e {0,1}V*xF

- Noisy edges:
h =0.5-A+N,N € [-0.5,0.5]V*N

® Reconstruction with undercomplete
autoencoders

Encoder

d

g

@

Decoder
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GNNs for Characterising Atomic Structure of Mono-Metallic Nanoparticles

§ ® Solve structures starting from X-ray scattering
' measurements

® Reconstruct structures of nanoparticles, s € S,
from their corresponding property (PDFs),
xe X.

® Learning task: f(-): X — S.

® From a density esimtation point of view:p(s|x).

® Many-to-one mapping
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Latent Generative Model

® Treat structures as a graphs with atoms as nodes, distances
as edge attributes

® Using property-structure pairs formulate a conditional
x s generative model

® Conditional Variational Autoencoder (CVAE)
® CVAE extends VAE framework to include conditioning input

® CVAE objective minimizes KLD between p(z|s,x) and its
variational approximation g4(z|s, x) resulting in an objective
of the form:

conditional-VAE Lcvae = Esup + ['reg (12)

—Eq, [ log po(slz, x)] + KL s (2ls. x)l [P (2I)]
(13)
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High level overview of the conditional generative model

® Conditioning input at
Encoder/Prior networks using MLPs

Training process

Latent space . .
® Encoder only during training

S
Encoder NN: o2 . Samplez  Decoder NN: oo ® Inference using Prior network alone

—~eee
qs(2[s,x) po(s|z,x °° ' Use GNNs in the encoder qy(-):
Hy, 0%, (m) — (m—1) A
PriorTN;I: : H U(H ) A; em—l) (14)
Py(2x) Generative process with H®) = X € RVXF and

HM) = 7 & RN

® Trained entirely with simulated data

Anker.. Selvan et al. 2021
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Fig. 2| The two-dimensional latent space with structure reconstructions. The points in the latent space

Anker .. Selvan et al. 2023, DeepStruc
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Meaningful interpolation in latent space
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Representation Learning with GNNs: Overview

@ Summary
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Other variations of GNN

1 Convolution
1 _operator | Neural FPs
GraphSAGE.
GAT
MoNet
an
GGNN.
KN
PinSAGE
FasiGON LADIES
GraphSAINT
Simple -
o Set2set SotPooling
Coursening ECC DiffPaol

{ EigenPooling. SAGPool

MENN

GraphSEN.
Tree LSTM.

Highway
Gon

Pool

Zhou et al. 2020 Graph neural networks: A review of methods and applications
Vignac et al. 2023 DiGress: Discrete Denoising diffusion for graph generation

GeN

PATCHY-
SAN

NLNN
SsE
Giraph LST™

N

Aden

LaeN

LP-GNN

Sentence
LST™

DeepGON

Generalized message passing
schemes

Inductive (graph inputs) vs
Transductive (single large graph)

GNNs for Knowledge graphs, meshes
Causal inference with GNNs
Scaling GNNs to O(M) nodes

Diffusion models
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Summary

® Convolutions on graphs can be approximated
in spectral domain

® ChebyNet uses a polynomial of spectral filter
approximated with Chebyshev polynomials

® First order approximation to ChebyNet yields
spatial graph convolutions

® Weighting nodes in a neighbourhood
differently yields attention-type models

® Transformers can be viewed as fully-connected
GATs

® Plenty of variations of GNNs by now

® Compact feature learning as Representation
Learning

' {(n vj € S}
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Thanks!

o f
® o ‘ [
o 2gs i

Questions?

® raghav@di.ku.dk

o
S 2 WO /raghavian

A

Funding

European Union's HorizonEurope research and

Carbontracker: Tracking and Predicting the Carbon Footprint of Training innovation programme undergrant agreements No.
Deep Learning Models 101070284 and No. 101070408

Lasse F. Wolff Anthony* ! Benjamin Kanding' ' Raghavendra Selvan'

pip install carbontracker
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