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u n i v e r s i t y o f c o p e n h a g e n

Graphs are everywhere!

Heterogenous graph-structured data are non-Euclidean data

https://graphdeeplearning.github.io/project/spatial-convnets/
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u n i v e r s i t y o f c o p e n h a g e n

Graph/Geometric Deep Learning is also going everywhere!

Graph-based ML has taken off in the past 3-4 years

(From dimensions.ai)
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u n i v e r s i t y o f c o p e n h a g e n

Representation Learning with GNNs: Overview

1 Motivation
Basics

2 Spectral & Spatial GNNs
ChebyNet
GNNs w/wo Self-Attention

3 Graph Representation Learning
Self-Supervised GNNs
Conditional Graph Generation

4 Summary
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u n i v e r s i t y o f c o p e n h a g e n

Graphs as data structures

Graph Notations
Consider a graph G = (X, A, E) with N nodes comprising F features per node: X ∈ RN×F

and adjacency matrix A ∈ {0, 1}N×N and edge attributes E ∈ RE×N×N .
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u n i v e r s i t y o f c o p e n h a g e n

One slide introduction to Deep Learning

Observed data {G1, G2, . . . , GN} ∈ G, Gi : Xi , Ai , Ei

Labels / Targets {y1, y2, . . . , yN} ∈ Y
Decision functions/ Models gθ(·) : G → Y

• gθ(·) can be any DL model
• θ are the trainable parameters; |θ| >> N
• Over-parameterised, non-linear function approximator
• Supervised training uses large labelled datasets
• Gradient descent based optimisation
• Multi-layered perceptrons, Convolutional/Graph neural networks, Transformers...
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u n i v e r s i t y o f c o p e n h a g e n

How to perform Convolution on Graphs?

Consider a signal operating on the nodes, X ∈ RN and a filter gΘ parameterized by Θ ∈ RN , the
graph convolution is given as:

gΘ ⋆ X = (1)
where, Φ = (ϕ0, ϕ1 . . . ϕN−1) ∈ RN×N are the orthogonal eigenfunctions forming the Fourier basis

Graph Laplacian

For a graph, G with adjacency matrix A ∈ RN×N :
the graph Laplcian is simply given as:

L = D − A (2)

D ∈ RN×N is the degree matrix with
Dii =

∑
j Aij

with eigenvalues in the diagonal matrix Λ =
diag(λ0, λ1, . . . , λN−1)

Figure from Geometric deep learning: Going beyond Euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, Pierre Vandergheynst 2016
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u n i v e r s i t y o f c o p e n h a g e n

Approximating Convolution on graphs with Chebyshev polynomials

Why the approximation?
Eigen decomposition of Graph Laplacian is expensive! Scales poorly with number of nodes

Recursive approximation with Chebyshev coefficients yields the popular spectral graph
convolution method: ChebyNet1

gΘ ⋆ X = (ΦgΘ)(ΦT X) ≈
K−1∑
k=0

θkTk(L̃)X (3)

with L̃ = 2
λmax

L − IN and Chebyshev coefficients θk .

1Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information processing systems 29 (2016): 3844-3852.
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u n i v e r s i t y o f c o p e n h a g e n

Overview of ChebyNet: CNN for Graphs
(but in spectral domain)

Defferrard et al. 2016
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u n i v e r s i t y o f c o p e n h a g e n

Graph Representation Learning with GNNs: Overview

1 Motivation
Basics

2 Spectral & Spatial GNNs
ChebyNet
GNNs w/wo Self-Attention

3 Graph Representation Learning
Self-Supervised GNNs
Conditional Graph Generation

4 Summary

Slide 11 — Raghavendra Selvan — Representation Learning using Graph Neural Networks — May 2, 2023



u n i v e r s i t y o f c o p e n h a g e n

Further approximation of ChebyNet yields the class of Spatial GNNs

Starting with Chebyshev approximation:

gΘ ⋆ X ≈
K−1∑
k=0

θkTk(L̃)X (4)

With K = 2, λmax = 2, the graph convolution operation becomes:

gΘ ⋆ X ≈ θ0X + θ1L̃X (5)

gΘ ⋆ X ≈ θ(D̃−1/2ÃD̃−1/2X) (6)

with θ0 = −θ1, Ã = A + I. More generally, for input X ∈ RN×F and weight matrix Θ ∈ RF×L:

H = D̃−1/2ÃD̃−1/2XΘ (7)

Stacking multiple of these layers with non-linearities yields the class of node GNNs2!

2Kipf, Thomas N., and Max Welling. ”Semi-supervised classification with graph convolutional networks.”
arXiv preprint arXiv:1609.02907 (2016).

Note: Chebyshev polynomial Tk (y) of order k is given by the recurrence: Tk (y) = 2yTk−1(y) − Tk−2(y) with
T0 = 1,T1 = y
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u n i v e r s i t y o f c o p e n h a g e n

GNNs update states of nodes based on neighbourhood

Graphically, H = D̃−1/2ÃD̃−1/2XΘ means:
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u n i v e r s i t y o f c o p e n h a g e n

GNNs when seen from a node’s point of view

• For a node i ∈ V with neighbours Ni the GNN operation in
layer-ℓ is given as:

h(ℓ)
i = σ

(
Θℓ

|Ni |
∑
j∈Ni

hℓ−1
i

)
(8)

with h(0)
i = xi and Θℓ are trainable parameters.

• Aggregation of transformed neighbouring node features
• M-layered GNN provides information from M-hops away!
• A form of learnable message passing!
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u n i v e r s i t y o f c o p e n h a g e n

Graphical notation for Graph Convolution Network

Dwivedi et al. 2022 Benchmarking Graph neural networks
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u n i v e r s i t y o f c o p e n h a g e n

Graph Attention Network pays differential attention to neighbours

Petar Veličković et al. 2018, Graph Attention Networks
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u n i v e r s i t y o f c o p e n h a g e n

Graph Attention Networks

h(ℓ)
i = σ

(∑
j∈Ni

αijΘℓhℓ−1
i

)
(9)
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u n i v e r s i t y o f c o p e n h a g e n

Representation Learning is Compact Feature Learning

Formalizing representation learning:
“Learning representations of the data that
make it easier to extract useful information
when building classifiers or other predictors.”
[1]

h = gϕ(z) (10)

z = fθ(x) ∈ RF (11)

h are usually psuedo-labels, z can then be used in
any downstream task to predict, y.

Also, interesting for graphs:
• Access meaningful vector representations of graphs
• Many applications: Graph similarity, graph matching, graph generation

[1]Representation Learning: A Review and New Perspectives. Yoshua Bengio, Aaron Courville, Pascal Vincent. 2014
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. Mehdi Noroozi, Paolo Favaro. 2017

Slide 19 — Raghavendra Selvan — Representation Learning using Graph Neural Networks — May 2, 2023



u n i v e r s i t y o f c o p e n h a g e n

Self-Supervised GNNs

• Pseudo-labels derived graph data
• Labels can be derived from:

X ∈ RN×F , A ∈ [0, 1]N×N , E ∈
RE×N×N

- Masking node features:
h = M · X, M ∈ {0, 1}N×F

- Noisy edges:
h = 0.5·A+N, N ∈ [−0.5, 0.5]N×N

• Reconstruction with undercomplete
autoencoders
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u n i v e r s i t y o f c o p e n h a g e n

GNNs for Characterising Atomic Structure of Mono-Metallic Nanoparticles

• Solve structures starting from X-ray scattering
measurements

• Reconstruct structures of nanoparticles, s ∈ S,
from their corresponding property (PDFs),
x ∈ X .

• Learning task: f (·) : X → S.
• From a density esimtation point of view:p(s|x).
• Many-to-one mapping
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u n i v e r s i t y o f c o p e n h a g e n

Latent Generative Model

• Treat structures as a graphs with atoms as nodes, distances
as edge attributes

• Using property-structure pairs formulate a conditional
generative model

• Conditional Variational Autoencoder (CVAE)
• CVAE extends VAE framework to include conditioning input
• CVAE objective minimizes KLD between p(z|s, x) and its

variational approximation qϕ(z|s, x) resulting in an objective
of the form:

LCVAE = Lsup + Lreg (12)
= −Eqϕ

[
log pθ(s|z, x)

]
+ KL

[
qϕ(z|s, x)||pψ(z|x)

]
(13)
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u n i v e r s i t y o f c o p e n h a g e n

High level overview of the conditional generative model

• Conditioning input at
Encoder/Prior networks using MLPs

• Encoder only during training
• Inference using Prior network alone
• Use GNNs in the encoder qϕ(·):

H(m) = σ(H(m−1), A; Θm−1) (14)

with H(0) = X ∈ RN×F and
H(M) = Z ∈ RN×L

• Trained entirely with simulated data

Anker.. Selvan et al. 2021
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u n i v e r s i t y o f c o p e n h a g e n

Joint Representation Space of property + structures in 2D latent space

Anker .. Selvan et al. 2023, DeepStruc
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u n i v e r s i t y o f c o p e n h a g e n

Meaningful interpolation in latent space

Anker .. Selvan et al. 2023, DeepStruc
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u n i v e r s i t y o f c o p e n h a g e n

Results on structure prediction of nanoparticles based on properties
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u n i v e r s i t y o f c o p e n h a g e n

Other variations of GNN

• Generalized message passing
schemes

• Inductive (graph inputs) vs
Transductive (single large graph)

• GNNs for Knowledge graphs, meshes
• Causal inference with GNNs
• Scaling GNNs to O(M) nodes
• Diffusion models

Zhou et al. 2020 Graph neural networks: A review of methods and applications
Vignac et al. 2023 DiGress: Discrete Denoising diffusion for graph generation
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u n i v e r s i t y o f c o p e n h a g e n

Summary

• Convolutions on graphs can be approximated
in spectral domain

• ChebyNet uses a polynomial of spectral filter
approximated with Chebyshev polynomials

• First order approximation to ChebyNet yields
spatial graph convolutions

• Weighting nodes in a neighbourhood
differently yields attention-type models

• Transformers can be viewed as fully-connected
GATs

• Plenty of variations of GNNs by now
• Compact feature learning as Representation

Learning
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u n i v e r s i t y o f c o p e n h a g e n

Thanks!

pip install carbontracker

Questions?
raghav@di.ku.dk
�§}/raghavian
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u n i v e r s i t y o f c o p e n h a g e n
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