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• Goal of my master thesis: Identifying tau neutrino

events in the KM3NeT/ORCA detector with GNNs

• ORCA is sensitive to atmospheric neutrinos

• Tau neutrinos not produced in atmosphere, detected

tau neutrinos exist due to neutrino oscillation

• GNNs are trained and evaluated on Monte-Carlo 

simulations

• Evaluation uses MC events weighted according to

Honda neutrino flux

 Tau neutrinos are the minority class

• Same for training, but tau neutrino events scaled up

to achieve class balance

Motivation
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Nontau events Tau events

Steffen Hallmann: Sensitivity to atmospheric tau-neutrino appearance and all-flavour search for neutrinos from the Fermi Bubbles 

with the deep-sea telescopes KM3NeT/ORCA and ANTARES
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• Applied different optimization steps: 

• Generated more simulation data ✓

• Tried out different weightings ✓

• Manual hyperparameter optimization ✓

• Currently ongoing, final step consists of an automatic hyperparameter optimization (AHPO)

• Two main goals with AHPO

• Optimizing the performance of the GNNs by searching for optimal hyperparameter configuration

• By trying out different hyperparameter configurations, one could learn something about which hyperparameters are 

the most relevant, if there are some correlations between different hyperparameters, etc.

• AHPO uses algorithms designed for “finding good hyperparameters with as few trainings as possible”

Status of my master thesis



March 22, 2023Lukas Hennig 4

• I am using Ray Tune as AHPO framework

• Ray is a framework for scaling Machine Learning tasks up for 

use on distributed systems

• Ray Tune is the part of the framework dealing with AHPO

• Many pre-implemented AHPO algorithms

• Search algorithms: suggests next hyperparameter configuration 

to evaluated

• Grid search, Random search, Bayes Optimization search, …

• Scheduler algorithms: determines which configurations get 

computing resources, early termination of bad configs

• Hyperband, Population based training, Asynchronous 

successive halving algorithm (ASHA), …

Ray Tune

https://www.ray.io/
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• I am using Random Search for suggestion of hyperparameter configs and ASHA for scheduling

• This is the “go-to solution” recommended in Ray Tunes FAQ for smaller problems

• ASHA assigns each trial, i.e., each suggested hyperparameter configuration to a so called “bracket”

• Each bracket has some epoch checkpoints where the performance of the trained models is compared

• Only the top 50% of networks is allowed to continue training after a checkpoint is reached, the other half is 

terminated, and a new trial is started

Ray Tune
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• Our GNN architecture is based on ParticleNet and implemented in OrcaNet

• The EdgeConv Block maps a graph with F features per node to a graph with the same number of nodes, but with F’ 

features per node

• Each node has information about a Cherenkov light signal associated with a triggered event as its features, e.g., the 

position and time

• A subset of these features is used as coordinates to calculate a nodes’ k nearest neighbors with a predefined 

distance measure

• Message passing is implemented on a node level using a shared multilayer perceptron (details on the next slide)

Properties of the GNNs

ParticleNet: Jet Tagging via Particle Clouds (Modified), Phys. Rev. D 101, 056019 (2020)
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https://github.com/KM3NeT/OrcaNet
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Mathematical description:

• Given: node 𝑖 with its 𝑘 nearest neighbors 𝑖𝑗 with 
𝑗 ∈ {0,… , 𝑘 − 1}

• Features of node 𝑖 are denoted 𝑥𝑖 ∈ ℝF

• Given an edge function ℎΘ 𝑥𝑖 , 𝑥𝑖𝑗 − 𝑥𝑖 : ℝ𝐹 ×

ℝ𝐹 → ℝ𝐹′ with trainable weights Θ, 
implemented as MLP 

• Perform a convolution over the nearest 

neighbors: 

𝑥𝑖
′ =

1

𝑘


𝑗=0

𝑘−1

ℎΘ 𝑥𝑖 , 𝑥𝑖𝑗 − 𝑥𝑖

Implementation:

EdgeConv block

ParticleNet: Jet Tagging via Particle Clouds (Modified), Phys. Rev. D 101, 056019 (2020)Lukas Hennig 7
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• Architecture below was used for manual HPO where the number of 

neurons in MLP is doubled after each block

• Between one and three dense layers before output layer, decreasing by 

a factor of two per layer

• Varying a few parameters from architecture below, e.g. number of 

EdgeConv blocks and dense layers, number of nearest neighbors k, 

learning rate, and batchsize

• Chosen evaluation metric (PR-AUC) had value up to 0.174 (for later 

comparison)

Manual HPO
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• Two build methods used for first AHPO

• First method called “per_block”, indicating that 

exponential increase in MLP neurons happens after a 

block

• After reaching a “peak width” in an EdgeConv block, 

further EdgeConv blocks are allowed with decreasing 

number of neurons (in contrast to manual HPO)

• Parameter space shown on the right

First AHPO
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• Second build method is called “per_kernel_unit”, 

indicating that an exponential increase happens in each 

layer of the MLP

• Exponential increase by a factor of two in beginning, 

later changed to sqrt(2)

• EdgeConv blocks after the peak width are decreasing in 

the same way

First AHPO

EdgeConv Block

k

C = (n, 2n, 4n)

EdgeConv Block

k

C = (8n, 16n, 32n)

EdgeConv Block

k

C = (32n, 16n, 8n)



March 22, 2023Lukas Hennig 11

• Ranges for each hyperparameter and for each build 

method were chosen manually to obtain networks with 

number of parameters up to about 9 million 

• Otherwise, time for training would be too long

First AHPO
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• On the right, the PR-AUC on the validation data 

for the trained GNNs can be seen

• 198 GNNs were trained during first AHPO

• GNNs performed worse than during manual HPO, 

where all models reached PR-AUC of over 0.16, 

many after about 15-20 epochs

• Do the exponentially decreasing EdgeConv blocks 

introduce a bottleneck? Is the MLP for the first 

EdgeConv blocks too small, which could cause a 

bottleneck?

Results of first AHPO
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• I went back to the architecture from manual 

HPO since it performed better

• Hyperparameter ranges are not anymore 

manually chosen such that they have at 

maximum 9 million params

• Instead, I implemented that configurations 

with too less or too many params are 

immediately terminated, resulting in 0.3 e6 < 

params < 9 e6

• Similar hyperparameters tuned as before, 

with the addition of tuning the parameters of 

the Adam optimizer

Second AHPO
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• Second AHPO is currently 

running

• Results look much more 

promising

• Analysis of the relevance of 

different hyperparameters is in 

preparation

• In total, I got granted 50k GPU 

hours from the NHR@FAU in 

Erlangen

• About 1/3 of that is used so far

Second AHPO
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• Summary:

• Ray Tune was used as a framework for an automatic hyperparameter optimization

• First AHPO used EdgeConv blocks with exponentially increasing and decreasing MLPs

• Models did not reach performance of manual HPO: maybe a bottleneck?

• Second AHPO is currently ongoing with variations of the architecture from the manual HPO

• Results look more promising

• Ideas what could have gone wrong in the first AHPO?

• Suggestions which architectures I could try out in the next weeks?

Conclusion



Thank you very much for your

attention!
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