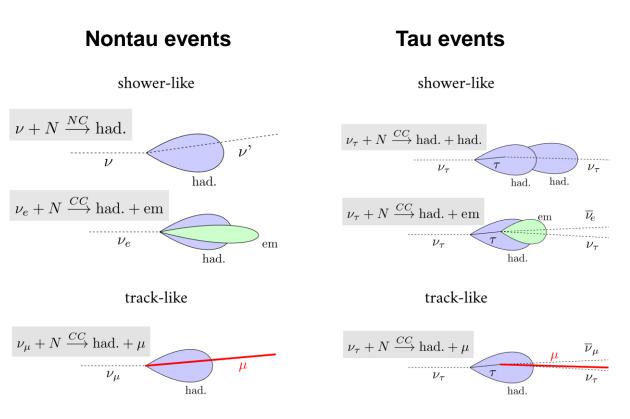


Automatic hyperparameter optimization for Graph Neural Networks

Lukas Hennig May 03, 2023 GraphNeT III

Motivation

- Goal of my master thesis: Identifying tau neutrino events in the KM3NeT/ORCA detector with GNNs
- ORCA is sensitive to atmospheric neutrinos
- Tau neutrinos not produced in atmosphere, detected tau neutrinos exist due to neutrino oscillation
- GNNs are trained and evaluated on Monte-Carlo simulations
- Evaluation uses MC events weighted according to Honda neutrino flux
 - \Rightarrow Tau neutrinos are the minority class
- Same for training, but tau neutrino events scaled up to achieve class balance



Status of my master thesis

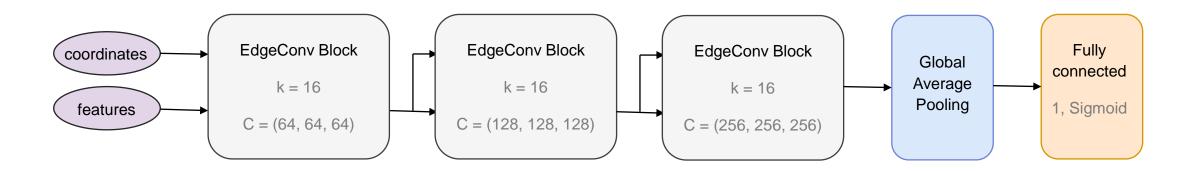
- Applied different optimization steps:
- Generated more simulation data ✓
- Tried out different weightings ✓
- Manual hyperparameter optimization ✓
- Currently ongoing, final step consists of an **automatic hyperparameter optimization (AHPO)**
- Two main goals with AHPO
- Optimizing the performance of the GNNs by searching for optimal hyperparameter configuration
- By trying out different hyperparameter configurations, one could learn something about which hyperparameters are the most relevant, if there are some correlations between different hyperparameters, etc.
- AHPO uses algorithms designed for "finding good hyperparameters with as few trainings as possible"

- I am using Ray Tune as AHPO framework
- Ray is a framework for scaling Machine Learning tasks up for use on distributed systems
- Ray Tune is the part of the framework dealing with AHPO
- Many pre-implemented AHPO algorithms
- Search algorithms: suggests next hyperparameter configuration to evaluated
- Grid search, Random search, Bayes Optimization search, ...
- Scheduler algorithms: determines which configurations get computing resources, early termination of bad configs
 - Hyperband, Population based training, Asynchronous successive halving algorithm (ASHA), ...

- I am using Random Search for suggestion of hyperparameter configs and ASHA for scheduling
- This is the "go-to solution" recommended in Ray Tunes FAQ for smaller problems
- ASHA assigns each trial, i.e., each suggested hyperparameter configuration to a so called "bracket"
- Each bracket has some epoch checkpoints where the performance of the trained models is compared
- Only the top 50% of networks is allowed to continue training after a checkpoint is reached, the other half is terminated, and a new trial is started

Bracket: Iter 32.000: None	Iter 16.000: None Iter 8.000: None Iter 4.000: None
Bracket: Iter 32.000: None	Iter 16.000: None Iter 8.000: None
Bracket: Iter 32.000: None	Iter 16.000: None

- Our GNN architecture is based on **ParticleNet** and implemented in OrcaNet
- The EdgeConv Block maps a graph with F features per node to a graph with the same number of nodes, but with F' features per node
- Each node has information about a Cherenkov light signal associated with a triggered event as its features, e.g., the
 position and time
- A subset of these features is used as coordinates to calculate a nodes' k nearest neighbors with a predefined distance measure
- Message passing is implemented on a node level using a shared multilayer perceptron (details on the next slide)



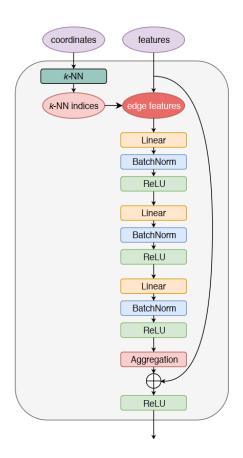
EdgeConv block

Mathematical description:

- Given: node *i* with its *k* nearest neighbors i_j with $j \in \{0, ..., k 1\}$
- Features of node *i* are denoted $x_i \in \mathbb{R}^F$
- Given an edge function $h_{\Theta}(x_i, x_{i_j} x_i) : \mathbb{R}^F \times \mathbb{R}^F \to \mathbb{R}^{F'}$ with trainable weights Θ , implemented as MLP
- Perform a convolution over the nearest neighbors:

$$x_{i}' = \frac{1}{k} \sum_{j=0}^{k-1} h_{\Theta} \left(x_{i}, x_{i_{j}} - x_{i} \right)$$

Implementation:

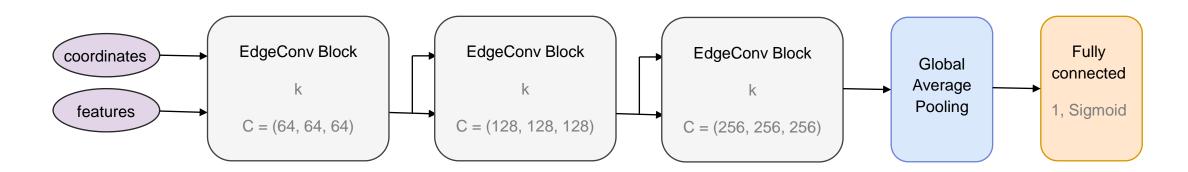


8

Manual HPO

Lukas Hennig

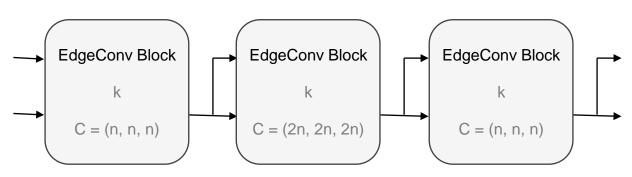
- Architecture below was used for manual HPO where the number of neurons in MLP is doubled after each block
- Between one and three dense layers before output layer, decreasing by a factor of two per layer
- Varying a few parameters from architecture below, e.g. number of EdgeConv blocks and dense layers, number of nearest neighbors k, learning rate, and batchsize
- Chosen evaluation metric (PR-AUC) had value up to 0.174 (for later comparison)



edgeconvLayers	denseLayers	best_epoch	pr_auc
	+	+	+
5	2	14	0.17496501
3	2	29	0.17426357
5	1	13	0.17393218
4	1	24	0.17387258
4	1	22	0.17284074
5	3	14	0.17237942
4	2	21	0.17233823
4	2	27	0.17204231
5	2	15	0.1713409

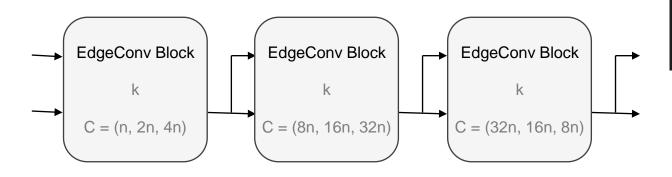
First AHPO

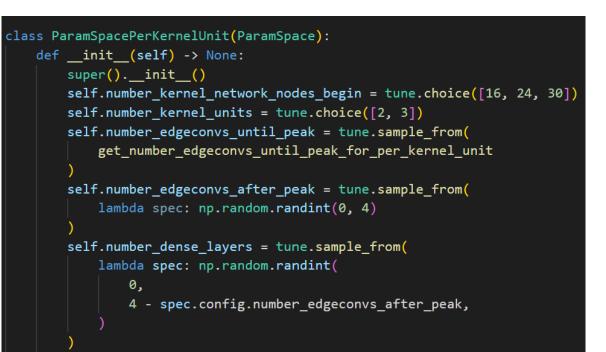
- Two build methods used for first AHPO
- First method called "per_block", indicating that exponential increase in MLP neurons happens after a block
- After reaching a "peak width" in an EdgeConv block, further EdgeConv blocks are allowed with decreasing number of neurons (in contrast to manual HPO)
- Parameter space shown on the right



TO ⁺	
105	class ParamSpace:
106	<pre>definit(self) -> None:</pre>
107	<pre>self.learning_rate = tune.qloguniform(1e-5, 1e-1, 5e-6)</pre>
108	<pre>self.use_lr_schedule = tune.choice([True, False])</pre>
109	<pre>self.batchsize = tune.choice([16, 32])</pre>
110	<pre>self.shortcut = tune.choice([True, False])</pre>
111	<pre>self.batchnorm = tune.choice([True, False])</pre>
112	<pre>self.useDropout = tune.choice([True, False])</pre>
113	<pre>self.dropout_rate = tune.sample_from(get_dropout_rate)</pre>
114	<pre>self.kNN = tune.choice([25, 30, 35, 40, 45])</pre>
115	
116	
117	class ParamSpacePerBlock(ParamSpace):
118	<pre>definit(self) -> None:</pre>
119	<pre>super()init()</pre>
120	<pre>self.number_kernel_network_nodes_begin = tune.choice([24, 26, 28, 30])</pre>
121	<pre>self.number_kernel_units = tune.choice([2, 3, 4])</pre>
122	<pre>self.number_edgeconvs_until_peak = tune.choice([5, 6])</pre>
123	<pre>self.number_edgeconvs_after_peak = tune.sample_from(</pre>
124	<pre>lambda spec: np.random.randint(0, spec.config.number_edgeconvs_until_peak)</pre>
125	
126	<pre>self.number_dense_layers = tune.sample_from(</pre>
127	lambda spec: np.random.randint(
128	0,
129	<pre>spec.config.number_edgeconvs_until_peak</pre>
130	<pre>- spec.config.number_edgeconvs_after_peak,</pre>
131	
132	
133	

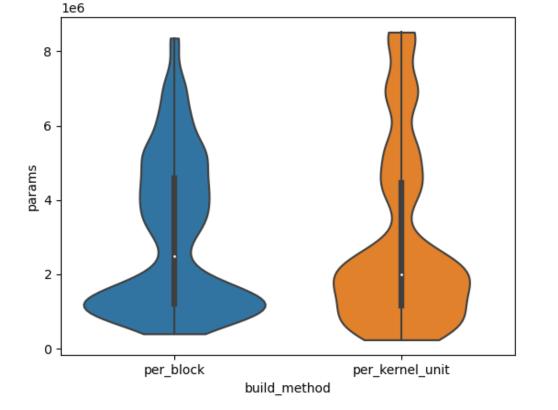
- Second build method is called "per_kernel_unit", indicating that an exponential increase happens in each layer of the MLP
- Exponential increase by a factor of two in beginning, later changed to sqrt(2)
- EdgeConv blocks after the peak width are decreasing in the same way





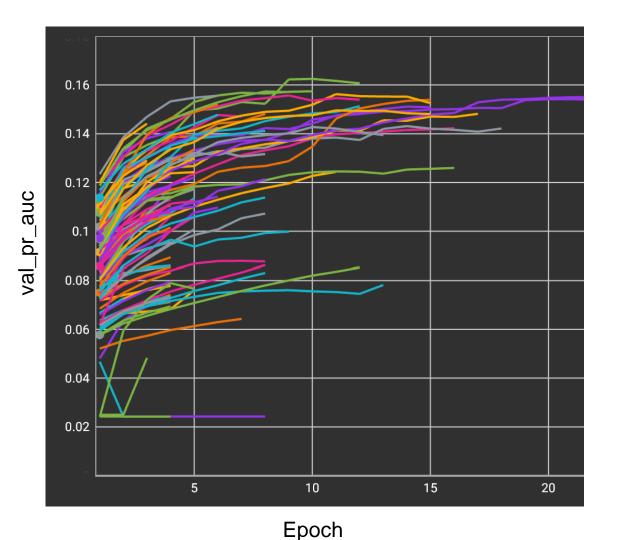
First AHPO

- Ranges for each hyperparameter and for each build method were chosen manually to obtain networks with number of parameters up to about 9 million
- Otherwise, time for training would be too long



Results of first AHPO

- On the right, the PR-AUC on the validation data for the trained GNNs can be seen
- 198 GNNs were trained during first AHPO
- GNNs performed worse than during manual HPO, where all models reached PR-AUC of over 0.16, many after about 15-20 epochs
- Do the exponentially decreasing EdgeConv blocks introduce a bottleneck? Is the MLP for the first EdgeConv blocks too small, which could cause a bottleneck?



Second AHPO

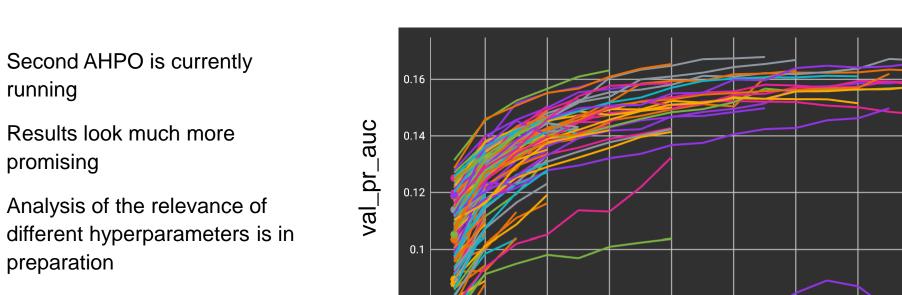
- I went back to the architecture from manual HPO since it performed better
- Hyperparameter ranges are not anymore manually chosen such that they have at maximum 9 million params
- Instead, I implemented that configurations with too less or too many params are immediately terminated, resulting in 0.3 e6 < params < 9 e6
- Similar hyperparameters tuned as before, with the addition of tuning the parameters of the Adam optimizer

5	∨ class ParamSpace:					
6	\sim	<pre>definit(self) -> None:</pre>				
7		<pre>self.learning_rate = tune.loguniform(1e-3, 1e-2)</pre>				
8		<pre>self.decay_rate = tune.loguniform(1e-3, 1e-1)</pre>				
9		<pre>self.batchsize = tune.choice([16, 32])</pre>				
0		<pre>self.shortcut = tune.choice([True, False])</pre>				
1		<pre>self.batchnorm = tune.choice([True, False])</pre>				
2		<pre>self.dropout_rate = tune.loguniform(1e-3, 5e-1)</pre>				
3		<pre>self.kNN = tune.choice([25, 30, 35, 40])</pre>				
4		<pre>self.number_kernel_network_nodes_begin = tune.choice([32, 64, 128, 256]</pre>)			
5		<pre>self.number_kernel_units = tune.choice([2, 3, 4])</pre>				
6		<pre>self.number_edgeconvs = tune.choice([3, 4, 5, 6])</pre>				
7		<pre>self.number_constant_dense_layers = tune.choice([1, 2, 3])</pre>				
8	\sim	<pre>self.number_decreasing_dense_layers = tune.sample_from(</pre>				
9	\sim	lambda spec: np.random.randint(
0		0,				
1		<pre>spec.config.number_edgeconvs,</pre>				
2						
3						
4		<pre>self.exponent_basis = tune.choice([1.9, 1.95, 2, 2.05])</pre>				
5		<pre>self.beta_1 = tune.choice([0.88, 0.89, 0.9, 0.91, 0.92])</pre>				
6		<pre>self.beta_2 = tune.choice([0.9988, 0.9989, 0.999, 0.9991, 0.9992])</pre>				
7		<pre>self.epsilon = tune.choice([0.01, 0.1, 1.0])</pre>				
0						

hours from the NHR@FAU in Erlangen

In total, I got granted 50k GPU

About 1/3 of that is used so far •



4

6

0.08

0.06

Results look much more

running

promising

preparation

٠

•

٠

Second AHPO

10

8

12

Epoch

14

16

18

22

• Summary:

- Ray Tune was used as a framework for an automatic hyperparameter optimization
- First AHPO used EdgeConv blocks with exponentially increasing and decreasing MLPs
- Models did not reach performance of manual HPO: maybe a bottleneck?
- Second AHPO is currently ongoing with variations of the architecture from the manual HPO
- Results look more promising
- Ideas what could have gone wrong in the first AHPO?
- Suggestions which architectures I could try out in the next weeks?

Thank you very much for your attention!