Friedrich-Alexander-Universitat) —
@ ™. EAU
e "‘"J sssssss I'|— H

Automatic hyperparameter optimization
for Graph Neural Networks

Lukas Hennig
May 03, 2023
GraphNeT il

g \\>'l AL |E/A\U
v -y " T

Motivation

« Goal of my master thesis: Identifying tau neutrino

events in the KM3NeT/ORCA detector with GNNs Nontau events Tau events
« ORCA s sensitive to atmospheric neutrinos shower-like shower-like
. . NC
« Tau neutrinos not produced in atmosphere, detected v+ N — had. v+ N G had. + had.
. - . . = e ——— l/
tau neutrinos exist due to neutrino oscillation v~ — ,—,—;-
had. had. had.
« GNNs are trained and evaluated on Monte-Carlo ve + N 25 had. + em o S I
simulatons e v @e ”””” P ““"V;'
had. had.
« Evaluation uses MC events weighted according to
Honda neutrino flux track-like track-like
. . . cc
= Tau neutrinos are the minority class Vut IV == had. 4y v+ N S5 had. 4 p T
eeeeeeee A s
« Same for training, but tau neutrino events scaled up had. had.
to achieve class balance
Steffen Hallmann: Sensitivity to atmospheric tau-neutrino appearance and all-flavour search for neutrinos from the Fermi Bubbles March 22, 2023 2

Lukas Henni
9 with the deep-sea telescopes KM3NeT/ORCA and ANTARES

Status of my master thesis

Applied different optimization steps:
« Generated more simulation data v’
« Tried out different weightings v/

« Manual hyperparameter optimization v/

Currently ongoing, final step consists of an automatic hyperparameter optimization (AHPO)

Two main goals with AHPO
« Optimizing the performance of the GNNs by searching for optimal hyperparameter configuration

« By trying out different hyperparameter configurations, one could learn something about which hyperparameters are
the most relevant, if there are some correlations between different hyperparameters, etc.

AHPO uses algorithms designed for “finding good hyperparameters with as few trainings as possible”

Lukas Hennig March 22, 2023 3

Ray Tune

« | am using Ray Tune as AHPO framework

« Ray is a framework for scaling Machine Learning tasks up for
use on distributed systems

« Ray Tune is the part of the framework dealing with AHPO
« Many pre-implemented AHPO algorithms
« Search algorithms: suggests next hyperparameter configuration

to evaluated

» Grid search, Random search, Bayes Optimization search, ...

Scheduler algorithms: determines which configurations get
computing resources, early termination of bad configs

« Hyperband, Population based training, Asynchronous
successive halving algorithm (ASHA), ...

Lukas Hennig httpS//WWW ray_io/ March 22, 2023 4

Ray Tune

« | am using Random Search for suggestion of hyperparameter configs and ASHA for scheduling

» This is the “go-to solution” recommended in Ray Tunes FAQ for smaller problems

 ASHA assigns each trial, i.e., each suggested hyperparameter configuration to a so called “bracket”
« Each bracket has some epoch checkpoints where the performance of the trained models is compared

« Only the top 50% of networks is allowed to continue training after a checkpoint is reached, the other half is
terminated, and a new trial is started

Bracket: Iter - : None | Iter

Bracket: Iter - : None | Iter
Bracket: Iter . : None | Iter

Lukas Hennig March 22, 2023 5

g k}i e e |E/A\U
w -y " T

Properties of the GNNs

« Our GNN architecture is based on ParticleNet and implemented in OrcaNet

« The EdgeConv Block maps a graph with F features per node to a graph with the same number of nodes, but with F’
features per node

« Each node has information about a Cherenkov light signal associated with a triggered event as its features, e.g., the
position and time

« Asubset of these features is used as coordinates to calculate a nodes’ k nearest neighbors with a predefined
distance measure

 Message passing is implemented on a node level using a shared multilayer perceptron (details on the next slide)

s N R N ()
EdgeConv Block EdgeConv Block EdgeConv Block Global Fully
oba connected
k=16 k=16 k=16 », Average ——»
Pooling 1, Sigmoid
C = (64, 64, 64) C =(128, 128, 128) C = (256, 256, 256)

- O / AN J

Lukas Hennig https://github.com/KM3NeT/OrcaNet ParticleNet: Jet Tagging via Particle Clouds (Modified), Phys. Rev. D 101, 056019 (2020) March 22, 2023 6

EdgeConv block =

Mathematical description: Implementation:

- Given: node i with its k nearest neighbors i; with Oy o

j€{0,.. k—1} | +

* Features of node i are denoted x; € RF

e Given an edge function hg (xi,xi. — xi) : RF x [Batrorm |
j | |

RF —» RF' with trainable weights ©, T

Linear

implemented as MLP ——

[BatchNorm |
¥
RelLU

 Perform a convolution over the nearest !
neighbors:

Linear
R 2
| BatchNorm

i J

RelLU
Aggregation

, k-1
X = EZ) he (xi,xij — xi) €
]=

Lukas Hennig ParticleNet: Jet Tagging via Particle Clouds (Modified), Phys. Rev. D 101, 056019 (2020) March 22, 2023 7

Manual HPO

* Architecture below was used for manual HPO where the number of
neurons in MLP is doubled after each block

.17496501
.17426357
.17393218
.17387258
.17284074
.17237942
.17233823
.17204231
.1713409

« Between one and three dense layers before output layer, decreasing by
a factor of two per layer

« Varying a few parameters from architecture below, e.g. number of
EdgeConv blocks and dense layers, number of nearest neighbors k,
learning rate, and batchsize

5 p
3 p
5 1
4 1
4 1
5 3
4 p
4 p
5 P

00 0 00 @& ® & ®

* Chosen evaluation metric (PR-AUC) had value up to 0.174 (for later
comparison)

4 N O N O N)
EdgeConv Block EdgeConv Block EdgeConv Block Global Fully
oba connected
k k k », Average ——»
Pooling 1, Sigmoid
C = (64, 64, 64) C = (128, 128, 128) C = (256, 256, 256)
- 2N NG AN J

Lukas Hennig March 22, 2023 8

First AHPO

* Two build methods used for first AHPO

ParamSpace:
__init__ (self) ->

nnnnnnnnnnnnnn
nnnnnnnnnnnnnnnn
sssssss

* FIrSt methOd Ca”ed “p@f_blOCk”, IndICatIng that self.learning_rate = tL.me.qloguni'For'm(le—S, le-1, 5e-6)

. . . self.use_lr_schedule = tune.choice([
exponential increase in MLP neurons happens after a self.batchsize = tune.choice([16, 32])
self.shortcut = tune.choice(]
bIOCk self.batchnorm = tune.choice(]
self.useDropout = tune.choice([

« After reaching a “peak width” in an EdgeConv block,
further EdgeConv blocks are allowed with decreasing
number of neurons (in contrast to manual HPO)

ParamSpacePerBlock(ParamSpace):
__init_ (self) ->

super().__init_ ()
self.number_kernel network_nodes_begin = tune.choice([24, 26, 28, 30])

« Parameter space shown on the right

N
D

D

self.number_kernel_units = tune.choice([2, 3, 4])

self.dropout_rate = tune.sample_from(get_dropout_rate)
self.kNN = tune.choice([25, 3@, 35, 40, 45])

self.number_edgeconvs_until_peak = tune.choice([5, 6])
self.number_edgeconvs_after_peak = tune.sample_from(

spec: np.random.randint(@, spec.config.number_ edgeconvs until peak)

//'

‘\\

//'

‘\\

- J

//'

N)

number_dense_layers = tune.sample_from(

EdgeConv Block EdgeConv Block > EdgeConv Block spec: np.random.randint(
e,
k k k spec.config.number_edgeconvs_until_peak
- spec.config.number_edgeconvs_after_peak,
C=(n,n,n) C =(2n, 2n, 2n) C=(n,n,n)

Lukas Hennig

March 22, 2023

9

First AHPO

« Second build method is called “per_kernel _unit”,
indicating that an exponential increase happens in each
layer of the MLP

« Exponential increase by a factor of two in beginning,
later changed to sqrt(2)

« EdgeConv blocks after the peak width are decreasing in
the same way

4 N~ N O)

——| EdgeConv Block EdgeConv Block » EdgeConv Block — >
k k k
—> > —>
C=(n, 2n, 4n) C =(8n, 16n, 32n) C =(32n, 16n, 8n)

- AN /o)

ParamSpacePerKernelUnit(ParamSpace):

__init_ (self) -»

super(). init ()

self_number_kernel network_nodes_begin = tune.choice([16, 24, 38])

self.number_kernel_units = tune.choice([2, 3])

self.number_edgeconvs until peak = tune.sample from(
get_number_edgeconvs_until_peak_ for_per_kernel_unit

)

self.number_edgeconvs_after_peak = tune.sample_from(
ec: np.random.randint(@, 4)

)

self.number_dense_layers = tune.sample_from(
spec: np.random.randint(
9,
4 - spec.config.number_edgeconvs_after_peak,

Lukas Hennig

March 22, 2023 10

First AHPO

le6

* Ranges for each hyperparameter and for each build g
method were chosen manually to obtain networks with
number of parameters up to about 9 million

« Otherwise, time for training would be too long

params

per_block per_kernel_unit
build_method

Lukas Hennig March 22, 2023 11

Y =
Results of first AHPO W) D= |H—/A/é\\\U

* On the right, the PR-AUC on the validation data
for the trained GNNs can be seen

« 198 GNNSs were trained during first AHPO

* GNNs performed worse than during manual HPO,
where all models reached PR-AUC of over 0.16,
many after about 15-20 epochs

val_pr_auc

* Do the exponentially decreasing EdgeConv blocks
introduce a bottleneck? Is the MLP for the first
EdgeConv blocks too small, which could cause a
bottleneck?

Lukas Hennig March 22, 2023 12

Second AHPO

| went back to the architecture from manual ParamSpace
HPO since it performed better —init_(self) ->
self.learning_rate = tune.loguniform(le-3, 1le-2)
self.decay rate = tune.loguniform(le-3, le-1)
* Hyperparameter ranges are not anymore self.batchsize = tune.choice([16, 32])
manually chosen such that they have at self.shortcut = tune.choice([True, 1))
. - self.batchnorm = tune.choice([R 1)
maximum 9 m|”|0n params self.dropout _rate = tune.loguniform(le-3, 5e-1)
self.kNN = tune.choice([25, 3@, 35, 48])
o |nStead, | implemented that Conﬁgura‘[ions self.number_kernel_network_nodes_begin = tune.choice([32, 64, 128, 256])
. self.number_kernel_units = tune.choice([2, 3, 4])
Wlth too IeSS or too many params are self.number_edgeconvs = tune.choice([3, 4, 5, 6])

immediately terminated, resulting inNn0.3e6 < self.number_constant_dense_layers = tune.choice([1, 2, 3])

params < 9 e6

Similar hyperparameters tuned as before,
with the addition of tuning the parameters of
the Adam optimizer

self.number_decreasing_dense_layers = tune.sample_from(
spec: np.random.randint(
9,
spec.config.number_edgeconvs,
)

)
self.exponent_basis = tune.choice([1.9, 1.95, 2, 2.85])

self.beta_1 = tune.choice([0.88, ©.89, 0.9, ©.91, ©.92])
self.beta_2 = tune.choice([0.9988, ©.9989, ©.999, ©.9991, 9.9992])
self.epsilon = tune.choice([0.01, 0.1, 1.9])

Lukas Hennig

March 22, 2023

13

Second AHPO v }} FA%\\U

« Second AHPO is currently
running

 Results look much more
promising

« Analysis of the relevance of
different hyperparameters is in
preparation

val_pr_auc

« In total, | got granted 50k GPU
hours from the NHR@FAU in
Erlangen

e About 1/3 of that is used so far

Lukas Hennig March 22, 2023 14

Conclusion v @ F/A/:\\\U

« Summary:
« Ray Tune was used as a framework for an automatic hyperparameter optimization
« First AHPO used EdgeConv blocks with exponentially increasing and decreasing MLPs
* Models did not reach performance of manual HPO: maybe a bottleneck?
« Second AHPO is currently ongoing with variations of the architecture from the manual HPO

« Results look more promising

» Ideas what could have gone wrong in the first AHPO?

« Suggestions which architectures | could try out in the next weeks?

Lukas Hennig March 22, 2023 15

Friedrich-Alexander-Universitat) —
@ ™. EAU
e "‘"J sssssss I'|— H

Thank you very much for your
attention!

	Slide 1: Automatic hyperparameter optimization for Graph Neural Networks
	Slide 2: Motivation
	Slide 3: Status of my master thesis
	Slide 4: Ray Tune
	Slide 5: Ray Tune
	Slide 6: Properties of the GNNs
	Slide 7: EdgeConv block
	Slide 8: Manual HPO
	Slide 9: First AHPO
	Slide 10: First AHPO
	Slide 11: First AHPO
	Slide 12: Results of first AHPO
	Slide 13: Second AHPO
	Slide 14: Second AHPO
	Slide 15: Conclusion
	Slide 16

