

Point-source search in IceCube, integration with GraphNeT **Tomas Kontrimas**

Analysis team:

Chiara Bellenghi Tomas Kontrimas Elena Manao Martin Ha Minh Rasmus Ørsøe Martin Wolf

GraphNeT III workshop | 03/05/2023 | Bornholm, Denmark

SFB 1258 Neutri

IceCube

- Cubic-kilometer Cherenkov telescope located at the geographic South Pole
- 5160 optical modules attached to 86 strings
- The ice is the target for CC interactions of atmospheric and astrophysical neutrinos

$$\nu_{l} + N \rightarrow l + N$$

Cherenkov photons are measured by PMTs in the optical modules

Main neutrino event signatures

• Tracks

- ν_{μ} charged current interactions produce a muon, which loses its energy while travelling through the detector
- Distribution of photon hits along a long path results in a good angular resolution
- Difficult to estimate neutrino energy

Cascades ullet

- ν_e charged current interactions produce an electron, which causes a forward electromagnetic cascade
- The neutrino energy is fully deposited within the detector, good energy resolution

Time [microseconds]

Improved point-source analysis

- NGC 1068 4.2 σ result using new methods:
 - KDE PDFs
 - BDT sigma estimation
 - DNN energy reconstruction
- 9 years of uniformly processed data, taken between 2011 and 2020
- Currently working on extending the analysis by 4 additional years!

Tomas Kontrimas

Evolution of the brightest neutrino spot

Tomas Kontrimas

Analysis dataset

Northern tracks:

- Event selection is optimised for upgoing muons $(-5^{\circ} < \delta < 90^{\circ})$
 - Mainly through-going, some starting and stopping tracks
- Uses Earth as a shield from the atmospheric muon background
- Has good agreement between data and Monte-Carlo simulations, which is crucial for improved methods
- Energy range of muons in experimental data from 100 GeV to ~6 PeV
- ~200 GeV energy muon travels ~1 km in ice (https://arxiv.org/pdf/0807.0034.pdf)

7

How data looks like

- We drown in background!
- The atmospheric and diffuse astrophysical neutrino fluxes are isotropic

How data looks like

- We drown in background!
- The atmospheric and diffuse astrophysical neutrino fluxes are isotropic
 - Point-source search for signal clustering
- The atmospheric flux is orders of magnitude higher than the astrophysical one
 - Astrophysical diffuse flux of high-energy neutrinos measured by IceCube has a different spectral shape than the atmospheric flux

Likelihood construction

• The unbinned likelihood approach:

$$\mathscr{L} = \prod_{i}^{N} \left[\frac{n_s}{N} \underbrace{S_i}_{i} + \left(1 - \frac{n_s}{N} \right) \cdot \underbrace{B_i}_{i} \right]$$

Distance from source

Tomas Kontrimas

• Test-statistic – likelihood-ratio:

$$TS = -2 \log \left[\frac{\mathscr{L}(n_s = 0 \mid \text{Data})}{\mathscr{L}(\hat{n}_s, \hat{\gamma} \mid \text{Data})} \right]$$

Signal spatial and energy terms

 Example of signal and background events distribution around the source position and difference in shape of energy distribution

Tomas Kontrimas

Likelihood construction | Signal

Signal PDF
$$f(\{x\}, N \mid \theta) = \prod_{i=1}^{N} \left[\frac{n_s}{N} \cdot f_s(x_i \mid \theta_s) + \left(1 - \frac{n_s}{N}\right) \cdot f_s(x_i \mid \theta_s) \right]$$

Signal Likelihood:

- 2 free parameters (the source declination δ_{s} is fixed):

 - spectral index γ mean # signal events $n_s \int \Phi_{\nu_{\mu} + \bar{\nu}_{\mu}}$

$$f_s(E_{\mu}, \vec{d}_{\mu}, \sigma | \theta_s) \sim \mathcal{S}(\psi | E_{\mu}, \sigma, \gamma) \cdot \mathcal{E}(E_{\mu} | \sin \delta_{src}, \gamma)$$

 $\left. \begin{array}{l} \text{Observables: } x_i = \{E_{\mu}, \vec{d}_{\mu}, \sigma\} \\ \text{Source param.: } \theta_s = \{\delta_s, \Phi_0 (\ \propto n_s), \gamma\} \end{array} \right.$

$$f_{\mu} = \Phi_0 \left(\frac{E_{\nu}}{1 \,\mathrm{TeV}}\right)^{-\gamma}$$

*Distance between the reconstructed event and the source positions GraphNeT III workshop | 03/05/2023 | Bornholm, Denmark

Likelihood construction | Background

$$f(\{x\}, N \mid \theta) = \prod_{i=1}^{N} \left[\frac{n_s}{N} \cdot f_s(x_i \mid \theta_s) + \left(1 - \frac{n_s}{N} \right) \right] f_i$$

Background Likelihood:

- No free parameters
- Background flux expectations is fixed through atmospheric models (MCEq)

$$f_b(E_\mu, \vec{d}_\mu, \sigma) = \frac{1}{2\pi} f_b(E_\mu, \sin \delta_\mu)$$

Background PDF $f_b(x_i \mid \theta_b)$

Observables: $x_i = \{E_{\mu}, d_{\mu}, \sigma\}$

Source param.: $\theta_s = \{\delta_s, \Phi_0 (\alpha n_s), \gamma\}$

Better modelling of the spatial PDF

Tomas Kontrimas

Analytic approximation:

 $f^{spatial}_{Gaussian}$

Rayleigh (1D-projection of 2D Gauss) doesn't describe our simulations properly, especially for low energy events!

New MC-based $f_{KDE}^{spatial} = \frac{1}{2\pi \sin \psi} f_s(\psi | E_{\mu}, \sigma, \gamma)$ construction:

Numerical non-parametric construction of the PDFs based on MC using Kernel **Density Estimation (KDE)**

Better modelling of the spatial PDF

Tomas Kontrimas

 The KDE approach reproduces the spectral index-dependent, nongaussian tails seen in simulations

$$f_{KDE}^{spatial} = \frac{1}{2\pi \sin \psi} f_s(\psi | E_\mu, \sigma, \varphi)$$

Especially important for softer spectral indices!

Background KDE PDF example

- Evaluation is quite slow, could be a good exercise for NN? (signal spatial PDF is 4D!)

Tomas Kontrimas

• We use B-Splines (photospline package) to approximate the KDE output

DNN-based energy estimator

- Deep Neural Network energy estimator:
 - Improves resolution by >30% above 10 TeV.
 - Resolves muon energy degeneracy below 1 TeV
 - Produces better background-signal separation, especially at low energies

DNN overview

Tomas Kontrimas

 Treating IceCube data as a 4D image and training a DNN with large-scale Monte Carlo simulations

Features (charge and time):

- Total charge & charge after 10 ns, 50 ns, 100 ns [p.e.]
- Time of the first hit, time spread, standard deviation of the time [ns]
- Time after which 1%, 3%, 5%, 11%, 15%, 20%, 50%, 80% of the charge have been collected [ns]

Muon energy on entry

Replacing DNN with GraphNet

- Work in progress by Rasmus, initial impression of 20-40% improvement in energy resolution
- DNN takes O(month) to train, while GNN O(days)
 - Allows faster iterations of testing and optimisations
- We have two detector geometry configurations:
 - IC79 data taken during 2010 season, 5 less strings on the detector edge
 - IC86 data taken during 2011-2022 seasons
 - GraphNet does not have a problem using different geometries

BDT uncertainty estimator

- Boosted Decision Tree angular uncertainty estimator: ullet
 - The BDT angular uncertainty $\sigma(E_{\mu}, \gamma)$ parameterises the median of the opening angle between true and reconstructed muon direction (reconstruction error)
 - The kinematic angle between ν_{μ} and μ is accounted in spatial KDE PDF construction
 - Takes the track declination as input, thus providing the conditional independence of the spacial PDF from the source declination $\mathcal{S}(\psi | E_{\mu}, \sigma, \gamma)$

Tomas Kontrimas

Analysis performance — unbiased Maximum Likelihood Estimators

Tomas Kontrimas

- Unbiased estimates of the MLE, thanks to a better description of the signal pdf
- Soft spectra: the coverage of the long tail of the pdf recovers many low energy events
- The improved energy estimation contributes to better constrain soft spectral indices
- Overall, the new analysis proves to be better at characterizing the source spectral emission!

4

3 fit

2

4.0

3.5 ți

3.0

Extending improved PS analysis

IC86 2022 is still taking data

IC86 2020-2021

used in the Seyfert Galaxies analysis (until Feb 13 2022)

IC86 2011-2019 already unblinded

IC79 requires updated DNN energy training

- Assuming that NGC 1068 emits a constant neutrino flux, possibility of reaching 5σ with additional data
- Double MC simulations dataset
 - More accurate KDE PDFs description
- Replace DNN with GNN for energy reconstruction
 - Better constrain on best fit γ
 - More accurate spatial PDFs

Summary and future ideas

- Improved analysis methods and likelihood description give unbiased estimates of MLE
- Improvements in energy reconstruction
 - Initial tests by Rasmus look promising!
- Future: better directional reconstruction
 - GNN already performs better than SplineMPE at the lowest energies
 - Looking forward to do comparisons with methods from Kaggle!
- Working on adding more data and consolidating data processing pipeline • KDE PDFs are model flux dependant, have to regenerate in order to test
 - different model hypotheses

Backup

Spline performance

Likelihood minimizer takes 10-100 steps -> Total time O(1s)

Evaluation of 20000 random points

%%timeit

bg_spline(data_bg) # 2d spline

3.05 ms \pm 83.1 μ s per loop (mean \pm std. dev. of 7 runs, 100 loops each)

%%timeit sig_spline(data_sig) # 3d spline

4.91 ms \pm 112 µs per loop (mean \pm std. dev. of 7 runs, 100 loops each)

%%timeit sig_spline_4d(data_sig_4d) # 4d spline

8.11 ms \pm 164 µs per loop (mean \pm std. dev. of 7 runs, 100 loops each)

Tomas Kontrimas

KDEs in likelihood

the signal likelihood we therefore need to generate four KDEs:

•
$$f_s(\psi, E_{reco}, \sigma | \gamma)$$
 and $f_s(E_{reco}, \sigma | \gamma)$ to obtain $f_s(\Psi | E_{reco}, \sigma, \gamma)$

•
$$f_s\left(E_{reco}, \delta_{src} | \gamma\right) \text{ and } f_s\left(\delta_{src} | \gamma\right) \text{ t}$$

In addition one more KDE is needed for the background case:

•
$$f_s(E_{reco}, \delta_{src} | \text{conv atm} + \text{diffuse a})$$

In order to calculate the conditional probabilities in the point-source likelihood we make use of the law of total probability, i.e. P(A | B) = P(A, B)/P(B). For

- to obtain $f_{s}(E_{reco} | \delta_{src}, \gamma)$
- astrophysical)

Top 3 results from catalog search

Source Name	Source Type	α [°]	δ [°]	$\hat{n}_{\mathbf{s}}$	$\hat{\gamma}$	$-\log_{10} p_{\text{local}}$	$arPhi_{90\%}$
NGC 1068	SBG/AGN	40.67	-0.01	79	3.2	$7.0(5.2\sigma)$	9.6
PKS 1424+240	BLL	216.76	23.80	77	3.5	$4.0~(3.7~\sigma)$	11.4
TXS 0506+056	BLL/FSRQ	77.36	5.70	5	2.0	$3.6~(3.5~\sigma)$	7.5

Tomas Kontrimas

BDT features

 In addition to energy and paraboloid σ , these include an estimate of the position of the largest energy deposition in the detector, a measure of the stochasticity of the event energy loss pattern, the track declination, and angular separations between different track reconstruction methods.

angular error estimators

- paraboloid sigma w.r.t muon direction ("sigma_pull_corrected_psi_mu_hybrid_energy_2.0")
- angular error asymmetry ("pbf_ratio")

angular distance between directional reconstructions

- mpe : splinempe ("psi_mpe_splinempe")
- linefit : splinempe ("psi_linefit_splinempe")
- splinempe (L3) : splinempe (final) ("psi_splinempe_l3_max")

energy estimators

- truncated energy ("loge_trunc")
- DNN energy ("loge_dnn")
- maximum millipede energy loss ("loge_millipede_max_loss")
- maximum relative millipede energy loss ("millipede_rel_highest_loss")
- nchannel ("n_hit_doms")

stochasticity estimators

- truncated energy peak loss / median loss ("log_e_loss_summary_truncated_PoM")
- reduced chi2 of linear energy loss pattern ("e_loss_summary_truncated_chi2_red")

location in the detector

- z-component of center of gravity ("cog_z")
- radial distance to center of gravity ("cog_rho")

other

- zenith angle from splinempe ("spline_mpe_zenith")
- cascade score from diffuse BDT ("casc_score")
- ("avg_dist_q")

