Summary, next workshop, and goodbye

GraphNeT Workshop / 4 May 2023

Andreas Søgaard

Niels Bohr Institute, University of Copenhagen

Trying to make GNNs (more) easily available to physicists

Factoring out ML from physics

Learning meaningful representations on graphs

UNIVERSITY OF COPENHAGEN

Meaningful interpolation in latent space

[^0]reconstructed structures shown with their stacking sequence. The structures are shown in two dimensions, and

Global reach, winning with transformers and ensembles

Stats

- 6,460 registrations
- 901 participants from 74 countries (!)
- 812 teams
- 11,206 submissions
- 220 Jupyter notebooks (https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/code)
- 194 Discussion threads (https://www.kaggle.com/competitions/icecube-neutrinos-in-deep-ice/ discussion)

Top 3 Solutions

- All sub-degree Track resolution!!
- All use transformer architecture (attention models)
- 1 \& 2 use vMF loss, 3 uses also a cross-entropy classifier, and 1 a modification
- A lot of ensembling going on
- $1^{\text {st }}$ Place uses GraphNeT!!!
- More technical details in write-ups:
 icecube-neutrinos-in-deep-ice/leaderboard

Encoding domain knowledges in NNs

Using GraphNeT outside "NeT"

Event for which GraphNeT performs significantly better than fiTQun

Ludwig

Karlijn

Jonathan

Using one framework to solve several physics problems

In parallel to Development ...

We've been investigating Applications in IceCube

$$
2 \text { Papers, }
$$

> 4+ Posters,
~20 talks,

ML4Astro,
ML4Lattice

Accelerating GNNs, and their use, with every release

Accelerating PyTorch Geometric

, ${ }^{2}$ pyg-lib: A unified GNN engine for optimized low-level graph routines
©/pyg-team/pyg-lib
\checkmark Joint effort of
nmo Kumo, © NVIDIA, wiol Intel \& OPyTorch
\checkmark Accelerating graph sampling routines
\checkmark Accelerating heterogeneous GNNs
\checkmark Accelerating sparse aggregations
\checkmark Speed-ups with no line of code change

Optimising GNN hyperparameters with/-out automation

Second AHPO

- Second AHPO is currently running
- Results look much more promising
- Analysis of the relevance of different hyperparameters is in preparation
- In total, I got granted 50k GPU hours from the NHR@FAU in Erlangen
- About $1 / 3$ of that is used so far

Epoch

Aiming for discoveries using better reconstruction

Evolution of the brightest neutrino spot

Pondering the myriad more ways to use GNNs for physics

Overview

Tasks using Monte Carlo only
Large scale neutrino selection in data
An AtmosphericEvent tagger (trained in data?)
Real-time analysis/alerts
Algorithm development
Explaining / visualising GNN output

in data?)

Low Energy Selection/Reco status

What's next?

Where to go from here

- Feedback form, please complete by Friday 12 May.
- Stay in touch through the GraphNeT Slack group.
- Weekly GraphNeT developer meetings on Zoom (Tuesdays, alternating weekly between 9:00 or 15:00 CEST) - announced in the Slack group.
- If you want a certificate of attendance, please let me know.

Those who have a bit of time before leaving: Hammeren natural area and trail (1 hr 20 mins)

See you at the next GraphNeT workshop!

[^0]: Fig. 6 | Latent space and reconstructions of stacking faulted nanoparticles. a) The latent space and

