

# Event Classification for the ESSnuSB+ Using GNNs

 $v_{\mu}$ - and  $v_{e}$ -events for neutrino oscillation studies



# Outline

- ESSnuSB Detector Overview
- Current Framework and Challenges
- GNN Implementation
- Performance on Charged Lepton Simulations
- Performance on Full Neutrino Simulations
- Investigation of Performance Differences
- Future Investigations



# **ESSnuSB** Detector Overview



# The European Spallation Source





$$P_{\nu_{\mu} \to \nu_{e}(\overline{\nu_{\mu}} \to \overline{\nu_{e}})} \simeq 4s_{23}^{2}s_{13}^{2}\frac{1}{(1-r_{A})^{2}}\sin^{2}\frac{(1-r_{A})\Delta L}{2} +8J_{r}\frac{r_{\Delta}}{r_{A}(1-r_{A})}\cos\left(\delta_{CP}-\frac{\Delta L}{2}\right)\sin\frac{r_{A}\Delta L}{2}\sin\frac{(1-r_{A})\Delta L}{2} +4c_{23}^{2}c_{12}^{2}s_{12}^{2}\left(\frac{r_{\Delta}}{r_{A}}\right)^{2}\sin^{2}\frac{r_{A}\Delta L}{2}$$

$$J_{r} \equiv c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta \equiv \frac{\Delta m_{31}^{2}}{2E_{v}}, r_{A} \equiv \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a = 2\sqrt{2}G_{F}N_{e}E_{v}$$



$$P_{v_{\mu} \rightarrow v_{e}(\overline{v_{\mu}} \rightarrow \overline{v_{e}})} \simeq 4s_{23}^{2}s_{13}^{2}\frac{1}{(1-r_{A})^{2}}\sin^{2}\frac{(1-r_{A})\Delta L}{2}$$
 "atmospheric"  
+ $8J_{r}\frac{r_{\Delta}}{r_{A}(1-r_{A})}\cos\left(\delta_{CP}-\frac{\Delta L}{2}\right)\sin\frac{r_{A}\Delta L}{2}\sin\frac{(1-r_{A})\Delta L}{2}$  "interference"  
+ $4c_{23}^{2}c_{12}^{2}s_{12}^{2}\left(\frac{r_{\Delta}}{r_{A}}\right)^{2}\sin^{2}\frac{r_{A}\Delta L}{2}$  "solar"

$$J_{r} = c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta = \frac{\Delta m_{31}^{2}}{2E_{v}}, r_{A} = \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a = 2\sqrt{2}G_{F}N_{e}E_{v}$$







M. Dracos, NuFact2022

ESS neutrino Super Beam plus

1<sup>st</sup> oscillation max:  $A=0.3 \sin \delta_{CP}$ 2<sup>nd</sup> oscillation max:  $A=0.75 \sin \delta_{CP}$ 

- Greater sensitivity to  $\delta_{CP}$  at the second oscillation peak
- Within reach with the distance available and the 5 MW proton beam produced at ESS



M. Dracos, NuFact2022





The European Spallation Source neutrino Super Beam Conceptual Design Report



### **ESSnuSB** - Detectors



The European Spallation Source neutrino Super Beam Conceptual Design Report





The European Spallation Source neutrino Super Beam Conceptual Design Report



### **ESSnuSB** - Detectors

Near detector Water Cherenkov Detector 22,000 PMTs (Ø 3.5") Measures the non-oscillated neutrino beam

Additionally: Emulsion detector and SFGD



The European Spallation Source neutrino Super Beam Conceptual Design Report

**Far detector x2** Water Cherenkov Detector 25,000 - 50,000 PMTs (Ø 20") Measures the oscillated neutrino beam





# **Current Framework**



# Current Framework

Charged Lepton Simulations

WCSIM https://github.com/WCSim/WCSim

#### Neutrino Interaction Simulations

GENIE Generator. Nucl. Instrum. Meth. A 614:87–104, 2010

WCSIM https://github.com/WCSim/WCSim LLH Based Reconstruction

fiTQun J. Phys.: Conf. Ser. 888 012066, 2017



# **Current Framework**

Charged Lepton Simulations

WCSIM https://github.com/WCSim/WCSim

# Neutrino Interaction Simulations

GENIE Generator. Nucl. Instrum. Meth. A 614:87–104, 2010

WCSIM https://github.com/WCSim/WCSim LLH Based Reconstruction fiTQun J. Phys.: Conf. Ser. 888 012066, 2017

#### Challenges

- Likelihood reconstruction takes ~1 min/event
- To explore different detector proposals, fast reconstruction is crucial



# **GNN** Implementation



# Data pipeline





# Data processing

- Cuts based on reconstructed variables
- Removes events that are hard to classify
- Reduces events by a factor ~2





# Data processing

- Cuts based on reconstructed variables
- Removes events that are hard to classify
- Reduces events by a factor ~2





# Training configuration

| Training set         | 100,000 events                                            |
|----------------------|-----------------------------------------------------------|
| Validation set       | 300,000 events                                            |
| Network architecture | DynEdge                                                   |
| Loss function        | BCE                                                       |
| Computing resources  | 2 Nvidia K80 (as four K40 cards)<br>Lunarc Aurora cluster |



# Training configuration

| Training set         | 100,000 events                                            |
|----------------------|-----------------------------------------------------------|
| Validation set       | 300,000 events                                            |
| Network architecture | DynEdge                                                   |
| Loss function        | BCE                                                       |
| Computing resources  | 2 Nvidia K80 (as four K40 cards)<br>Lunarc Aurora cluster |

Dense events and 12800 MB memory limit/node limits the possible batch size



# Charged Lepton Performance



Charged lepton simulations

Event ratios are unweighted, but from our knowledge of the neutrino beam, we can set the target FPRs to:

- Muons neutrinos: 0.1%
- Electron neutrinos: 1%



#### Charged lepton simulations





#### Charged lepton simulations





#### Charged lepton simulations







#### Charged lepton simulations







Charged lepton simulations

• For pure charged lepton simulations with filtering of difficult events, the GNN is on par with the fiTQun LLH method.

However:

- Event filter relies on fiTQun reconstructed variables
- Full neutrino events can contain more than single charged leptons (pions, double-bangs etc.)



# Neutrino Event Performance



Neutrino event simulations - without data cut



LUND

UNIVERSITY

**ESS neutrino Super Beam plus** 

Neutrino event simulations - without data cut





Neutrino event simulations - without data cut





Neutrino event simulations - without data cut

- The GNN has acceptable performance even on the full events
- Using the GNN, the data cuts can be made obsolete

Further investigations

- Look at performance differences on an event basis
- Make a GNN-filter for good/bad events



Neutrino event simulations - without data cut

| Data extraction       | ~10 <sup>-4</sup> mins/event                 |
|-----------------------|----------------------------------------------|
| Training              | ~10 <sup>-3</sup> mins/event                 |
| Reconstruction        | ~10 <sup>-4</sup> mins/event                 |
|                       |                                              |
| fiTQun Reconstruction | ~1 min/event                                 |
| Improvement           | $10^3$ (w/ training) / $10^4$ (w/o training) |



# **Performance** Investigations



### Factors impacting performance - multiple charged lepton signatures Neutrino event simulations - with data cut





# Factors impacting performance - multiple charged lepton signatures Neutrino event simulations - with data cut





#### Event for which GraphNeT performs significantly better than fiTQun



#### Event for which GraphNeT performs significantly better than fiTQun



# Factors impacting performance - pion creation Neutrino event simulations - with data cut



#### fiTQun performance



## Factors impacting performance - pion creation Neutrino event simulations - with data cut



#### fiTQun performance with logarithmic x axis





# Factors impacting performance - pion creation Neutrino event simulations - with data cut







# Factors impacting performance

Neutrino event simulations - with data cut

The GNN is able to identify the characteristics of both

- Events with two Cherenkov rings due to decaying muons
- Events with pion production

Filtering these types of events and treating them separately could be beneficial



# Thank you!

# **Additional Slides**



### Relation between interaction position and reconstruction performance Neutrino event simulations - with data cut

#### Event position distributions





# Relation between interaction position and reconstruction performance Neutrino event simulations - with data cut





