Improving the direction and energy estimation of low-energy events in ANTARES with ML

Juan García Méndez < jgarmen@upvnet.upv.es>, Salva Ardid & Miquel Ardid on behalf of the ANTARES collaboration, Universitat Politècnica de València

ANTARES in a nutshell

First large undersea neutrino telescope [1]:

- 12 vertical lines forming a 3D array of photo-sensors
- 25 floors per line
- 3 Optical Modules (OMs) per floor

It detects Cherenkov light induced by secondary particles from neutrino interactions

Problems

with classical approaches (BBfit) for lowenergy single-line (SL) events [2].

• Other interesting parameters, such as energy, are not reconstructed for these • Direction angles of the neutrino [3]. events.

The low-energy range is interesting for dark matter searches and other studies.

Solution

 Azimuth angle reconstruction is missing We present a method based on ML aimed to improve the SL event reconstruction, mainly focused on track events: (anti)muon-neutrino interactions.

- Closest point of the track to the telescope

(track events) or interaction vertex (shower events).

- Neutrino energy (shower events) or muon
- energy (track events).

Track parameters approach: Neural Networks

We combined Deep Convolutional Networks (DCNs) [4] with Mixture Density Networks (MDNs) [5].

• MDNs allow to predict not only the direction angles but also their uncertainty.

 DCNs extract the important features.

The network was trained with Monte Carlo simulations [6] of (anti)muon-neutrino interactions:

- Training set (60%)
- Validation set (20%), to avoid over-fitting through Early Stopping
- Test set (20%), to evaluate the generality of the results

Input	Convolution 2D + ReLU	Max Pooling 2D	Convolution 2D + Re	
(25,161,3)	Filters 16, Kernel 2x10	Kernel 2x2	Filters 32, Kernel 2x	
Flatten + DropOut (0.2)	Max Pooling 2D Kernel 2x2	Convolution 2D + ReLU Filters 128, Kernel 2x10	Max Pooling 2D Kernel 2x2	
Dense + ReLU + Batch	Dense + ReLU + Batch	Dense + ReLU + Batch	Dense + ReLU + Bat	
Normalization. Size 128	Normalization. Size 128	Normalization. Size 32	Normalization. Size 3	

From data to images

Two-dimensional images are created (floor x time) using the hit information. Images are then centered based on the reference hit.

The RGB colors of the pixels are obtained by weighting the angle of the OM with the voltage amplitude of the hit.

Results

DCN outperforms classical reconstruction methods for the direction angles (θ, ϕ) .

Absolute	BBfit		DCN		DCN (50% lowest σ)	
error	Mean	Median	Mean	Median	Mean	Median
Zenith	15.5°	8.5°	7.4°	4.4°	3.7°	2.5°
Azimuth	-	-	41.4°	31.5°	29.3°	23.6°
Total	-	-	28.1°	22.4°	18.3°	13.2°

Moreover, our uncertainty parameter behaves as expected for a standard deviation value.

Reconstruction of the closest point of the track to the telescope (R_c, Z_c):

Financial Support: "European Union NextGenerationEU/PRTR" - Programa de Planes Complementarios I+D+I (ref. ASFAE/2022/014), Generalitat Valenciana Gen-T Programa de Planes Complementarios I+D+I (ref. ASFAE/2022/014), Generalitat Valenciana Gen-T Programa de Planes Complementarios I+D+I (ref. ASFAE/2022/014), Generalitat Valenciana Gen-T Program (ref. CIDEGENT/2019/043) & Ministerio de Ciencia e Innovación/European Union (FEDER) (ref. PID2021-124591NB-C42).

The results are good and will be used in the energy reconstruction.

Energy reconstruction approach (ongoing work)

applying criteria based on the above reconstructions. This is done to try to keep events as close to the telescope as possible, since for these the energy reconstruction is more feasible.

The number of relevant components are chosen by the elbow rule and those are used to train a Feedforward NN that predicts the decimal logarithm of energy.

For the energy reconstruction, we take the layer activations of the previous networks and perform a Principal Componente Analysis (PCA). We also reduce the size of the DataSet by

[5] C.M. Bishop, Neural Computing Research Group NCRG/94/004, (1994). [6] ANTARES collaboration, JCAP 01 (2021) 064 [arXiv:2010.06621].