Fast eccentric and inclined inspirals into a rotating black hole

Philip Lynch
Collaborators: Niels Warburton, Maarten van de Meent and Vojtech Witzany

Requirements for LISA

- Model must include precession and eccentricity
- Fast to evaluate <1s
- Phase accurate to $O(1 / S N R)$

$$
\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{\beta \gamma}^{\alpha} \frac{d x^{\beta}}{d \tau} \frac{d x^{\gamma}}{d \tau}=\epsilon a_{(1)}^{\alpha}+\epsilon^{2} a_{(2)}^{\alpha}+\mathcal{O}\left(\epsilon^{3}\right)
$$

$$
\varphi=\epsilon^{-1} \varphi^{(0 \mathrm{PA})}+\epsilon^{-1 / 2} \varphi^{(\mathrm{res})}+\varphi^{(1 \mathrm{PA})}+\mathcal{O}(\epsilon)
$$

- Adiabatic (OPA): $<a_{\text {Diss }}^{(1)}>$ or $\mathcal{E} \& \mathcal{L}$ Fluxes
- Post-Adiabatic (1PA): $a^{(1)} \&<a_{\text {Diss }}^{(2)}>$
- Orbital Resonances

Geodesic Motion in Kerr Spacetime

- Orbital Elements $\vec{P}: \quad p=\frac{2 r_{1} r_{2}}{M\left(r_{1}+r_{2}\right)}, \quad e=\frac{r_{1}-r_{2}}{r_{1}+r_{2}{ }^{2}}, x=\cos \theta_{\text {inc }}=\sqrt{1-z_{-}^{2}}$
- Mino Time $\lambda: \quad \frac{d \lambda}{d \tau}=\left(r^{2}+a^{2} \cos ^{2} \theta\right)^{-1}$
- Phases $\vec{q}: \mathrm{q}_{\mathrm{r}}=\Upsilon_{r}^{(0)}(p, e, x) \lambda+q_{r, 0} \& \mathrm{q}_{\mathrm{z}}=\Upsilon_{z}^{(0)}(p, e, x) \lambda+q_{z, 0}$

Generic Kerr Inspirals

Equations of motion

- Osculating Geodesics (OG)
- $x^{\alpha}(\lambda)=x_{G}^{\alpha}\left(I^{A}(\lambda), \lambda\right)$
- $u^{\alpha}(\lambda)=u_{G}^{\alpha}\left(I^{A}(\lambda), \lambda\right)$
- $I^{A}=\left\{P_{j}, q_{i 0}\right\}$
- $\dot{I}^{A}=0 \rightarrow F\left(a^{\alpha}\right)$

Force Model $\boldsymbol{a}^{\boldsymbol{\alpha}}$

- Eccentric Equatorial [2112.05651]
- Spherical [2305.10533]
- Combine to create 1st order generic Kerr toy model $a_{(1)}^{\alpha}$
- Rescale $a_{(1)}^{\alpha}$ by PN orders to make 2nd order toy model $a_{(2)}^{\alpha}$
- $a^{\alpha}=\epsilon a_{(1)}^{\alpha}+\epsilon^{2} a_{(2)}^{\alpha}$

Osculating Geodesics (OG)

$$
\begin{aligned}
\dot{P}_{j} & =0+\epsilon F_{j}^{(1)}(\vec{P}, \vec{q})+\epsilon^{2} F_{j}^{(2)}(\vec{P}, \vec{q}) \\
\dot{q}_{i} & =\Upsilon_{i}(\vec{P})+\epsilon f_{i}^{(1)}(\vec{P}, \vec{q}) \\
\dot{t} & =f_{t}^{(0)}(\vec{P}, \vec{q}) \\
\dot{\phi} & =f_{\phi}^{(0)}(\vec{P}, \vec{q})
\end{aligned}
$$

Near Identity Transformations (NITs)

$$
\begin{aligned}
& \tilde{P}_{j}=P_{j}+\epsilon Y_{j}^{(1)}(\vec{P}, \vec{q})+\epsilon^{2} Y_{j}^{(2)}(\vec{P}, \vec{q})+\mathcal{O} \epsilon^{3} \\
& \tilde{q}=q_{i}+\epsilon X_{i}^{(1)}(\vec{P}, \vec{q})+\epsilon^{2} X_{i}^{(2)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{3}\right)^{\prime}(\vec{P}, \vec{q})+\epsilon Z_{t}^{(1)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{2}\right) \\
& \tilde{\phi}=\phi+Z_{\phi}^{(0)}(\vec{P}, \vec{q})+\epsilon Z_{\dot{p}}^{(1)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Averaged EOM

$$
\begin{aligned}
\dot{\tilde{P}}_{j} & =0+\epsilon \tilde{F}_{j}^{(1)}(\overrightarrow{\tilde{P}})+\epsilon^{2} \tilde{F}_{j}^{(2)}(\overrightarrow{\tilde{P}}) \\
\dot{\tilde{q}}_{i} & =\Upsilon_{i}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{i}^{(1)}(\overrightarrow{\tilde{P}}) \\
\dot{\tilde{t}} & =\Upsilon_{t}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{t}^{(1)}(\overrightarrow{\tilde{P}}) \\
\dot{\tilde{\phi}} & =\Upsilon_{\phi}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{\phi}^{(1)}(\overrightarrow{\tilde{P}})
\end{aligned}
$$

Generic Kerr NITs

ϵ	OG Inspiral	NIT Inspiral	Speed-up
10^{-1}	9.33 s	0.127 s	~ 73.5
$10^{-1.5}$	13.2 s	0.099 s	~ 133
10^{-2}	29.7 s	0.088 s	~ 338
$10^{-2.5}$	88.3 s	0.103 s	~ 857
10^{-3}	281 s	0.117 s	~ 2402
$10^{-3.5}$	860 s	0.14 s	~ 6143
10^{-4}	2697 s	0.254 s	$\sim 10,618$

Table 1: Computational time required to evolve an inspiral from its initial conditions of $\left(p_{0}, e_{0}, x_{0}\right)=(9.5,0.38,0.8)$ to $p=9$ for different values of the mass ratio.

Orbital Resonances

- NIT is singular when $\Upsilon_{\perp}=n \Upsilon_{r}+m \Upsilon_{z}=0$
- Generic Average:

- $\langle A\rangle=\lim _{\lambda \rightarrow \infty} \frac{1}{2 \Lambda} \int_{-\Lambda}^{\Lambda} A(\lambda) d \lambda=\frac{1}{(2 \pi)^{2}} \oint \oint A\left(q_{r}, q_{z}\right) d q_{r} q_{z}=A_{(0,0)}$
- Resonance Average:
- $\langle A\rangle_{\text {res }}=\lim _{\lambda \rightarrow \infty} \frac{1}{2 \Lambda} \int_{-\Lambda}^{\Lambda} A(\lambda) d \lambda=\sum_{N \in \mathbb{Z}} A_{(N n, N m)} e^{i N q_{\perp}}$
- Resonant phase: $q_{\perp}=n \mathrm{q}_{r}+\mathrm{m}_{\mathrm{z}}$
- All other combinations: $q_{\|}$
- Cause "jumps" in $\vec{P} \propto \epsilon^{1 / 2}$
- Results in phase error $\propto \epsilon^{-1 / 2}$

Transient Orbital Resonance Locations

Near-Resonant NIT

Averaged EoM

$$
\begin{aligned}
\overline{\tilde{P}}_{j} & =P_{j}+\epsilon Y_{j}^{(1)}\left(\overline{\vec{P}}, q_{\|}\right)+\epsilon^{2} Y_{j}^{(2)}\left(\vec{P}, q_{\|}\right)+\mathcal{O}\left(\epsilon^{3}\right) \\
\tilde{q}_{i} & =q_{i}+\epsilon X_{i}^{(1)}\left(\vec{P}, q_{\|}\right)+\epsilon^{2} X_{i}^{(2)}\left(\vec{P}, q_{\|}\right)+\mathcal{O}\left(\epsilon^{3}\right)^{\prime} \\
\tilde{t} & =t+Z_{t}^{(0)}\left(\vec{P}, q_{\|}\right)+\epsilon Z_{t}^{(1)}\left(\vec{P}, q_{\|}\right)+\mathcal{O}\left(\epsilon^{2}\right) \\
\tilde{\phi} & =\phi+Z_{\phi}^{(0)}\left(\vec{P}, q_{\|}\right)+\epsilon Z_{\phi}^{(1)}\left(\vec{P}, q_{\|}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\tilde{P}}_{j}=0+\epsilon \tilde{F}_{j}^{(1)}\left(\overrightarrow{\tilde{P}}, \tilde{q}_{\perp}\right)+\epsilon^{2} \tilde{F}_{j}^{(2)}\left(\overrightarrow{\tilde{P}}, \tilde{q}_{\perp}\right) \\
& \dot{\tilde{q}}_{i}=\Upsilon_{i}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{i}^{(1)}\left(\overrightarrow{\tilde{P}}, \tilde{q}_{\perp}\right) \\
& \dot{\tilde{t}}_{k}=\Upsilon_{t}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{t}^{(1)}(\overrightarrow{\tilde{P}}) \\
& \dot{\tilde{\phi}}_{k}=\Upsilon_{\phi}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{\phi}^{(1)}(\overrightarrow{\tilde{P}})
\end{aligned}
$$

Near Resonant NIT Results

ϵ	OG Inspiral	NIT Inspiral	Speed-up
10^{-1}	3.44 s	0.724 s	~ 4.75
$10^{-1.5}$	7.21 s	0.72 s	~ 10
10^{-2}	18.7 s	0.817 s	~ 22.9
$10^{-2.5}$	48.7 s	1.36 s	~ 35.8
10^{-3}	160 s	2.41 s	~ 66.4
$10^{-3.5}$	516 s	5.08 s	~ 102
10^{-4}	1611 s	14.35 s	~ 112

Table 1: Computational time required to evolve an inspiral from its initial conditions of $\left(p_{0}, e_{0}, x_{0}\right)=(6.5,0.38,0.8)$ to $p=5.8$ for different values of the mass ratio.

Evolving through a single resonance (2/3)

- Non-resonant NIT when

$$
\left|n \Upsilon_{r}+\mathrm{m} \Upsilon_{\mathrm{z}}\right| \geq \epsilon^{\frac{1}{7}} \delta^{\frac{2}{7}}\left\langle T_{\text {Res }}\right\rangle
$$

- Near-resonant NIT when

$$
\left|n \Upsilon_{r}+\mathrm{m} \Upsilon_{\mathrm{z}}\right| \leq \epsilon^{\frac{1}{7}} \delta^{\frac{2}{7}}\left\langle T_{\text {Res }}\right\rangle
$$

- OG inspiral takes ~ 2.5 days

Evolving through multiple resonances $(2 / 3+1 / 2)$

- Non-resonant NIT when

$$
\left|n \Upsilon_{r}+\mathrm{m} \Upsilon_{\mathrm{z}}\right| \geq \epsilon^{\frac{1}{7}} \delta^{\frac{2}{7}}\left\langle T_{\text {Res }}\right\rangle
$$

- Near-resonant NIT when

$$
\left|n \Upsilon_{r}+\mathrm{m} \Upsilon_{\mathrm{z}}\right| \leq \epsilon^{\frac{1}{7}} \delta^{\frac{2}{7}}\left\langle T_{\text {Res }}\right\rangle
$$

- OG inspiral takes ~ 3 days

What about a Resonance Jump?

Conclusions

- Using NITs lets you calculate EMRI trajectories in than a second by removing oscillations from EoM
- Break down near resonances, which are likely to occur
- Modify NIT to remove all oscillations except the resonant ones
- Fastest solution so far is to switch
 between full and near-resonant NIT

Near-Identity (Averaging) Transformations

Transform to new variables

$$
\begin{aligned}
& \tilde{P}_{j}=P_{j}+\epsilon Y_{j}^{(1)}(\vec{P}, \vec{q})+\epsilon^{2} Y_{j}^{(2)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{3}\right) \\
& \tilde{q}_{i}=q_{i}+\epsilon X_{i}^{(1)}(\vec{P}, \vec{q})+\epsilon^{2} X_{i}^{(2)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{3}\right) \\
& \tilde{S}_{k}=S_{k}+Z_{k}^{(0)}(\vec{P}, \vec{q})+\epsilon Z_{k}^{(1)}(\vec{P}, \vec{q})+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

To obtain equations of motion independent of \vec{q}

$$
\begin{aligned}
\dot{\tilde{P}}_{j} & =0+\epsilon \tilde{F}_{j}^{(1)}(\overrightarrow{\tilde{P}})+\epsilon^{2} \tilde{F}_{j}^{(2)}(\overrightarrow{\tilde{P}}) \\
\dot{\tilde{q}}_{i} & =\Upsilon_{i}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{i}^{(1)}(\overrightarrow{\tilde{P}}) \\
\dot{\tilde{S}}_{k} & =\Upsilon_{k}^{(0)}(\overrightarrow{\tilde{P}})+\epsilon \Upsilon_{k}^{(1)}(\overrightarrow{\tilde{P}})
\end{aligned}
$$

