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Flux-balance laws

I Goal of self-force program: radiation during inspiral

I BH perturbation theory: motion =⇒ radiation

I Motion depends on (regularized) fields at body:
these are hard to compute!

I Goal of flux-balance:
I Derive some aspects of motion w/ asymptotic fields

(easier to compute)
I Exploit symmetries of background spacetime:

conserved quantities and currents
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Two-timescale formalism (old-fashioned style)

I Geodesic motion: constants of motion Q

I Non-geodesic motion: “conserved quantities” Q(t, t̃)
I Slow decay of orbit (this talk): dependence on t̃ = εt

(“slow time”)
I Rapid oscillations (average over): dependence on t

(“fast time”)

I Q: Can one determine 〈∂Q/∂t̃〉 from fluxes of a
conserved current?

A: Yes, for Eξ ≡ paξa, up to second order (this talk)
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Conserved current

I General functional of gab:

(Jξ)abc[g] ≡ Gde[g]gefξ
f εdabc[g]

I Perform two perturbations:

δ1δ2Jξ ≡ J
(2)
ξ{δ1g, δ2g}+ J

(1)
ξ{δ1δ2g}.

I Properties of J
(2)
ξ:

I Symmetric & bilinear in δ1gab, δ2gab
I Conserved for vacuum perturbations:

dJ
(2)
ξ{δ1g, δ2g} =

1

2

[
G
(1)

ab{δ1g}£ξδ2gab + (δ1 ←→ δ2)

]
ε

I Current arises from “effective stress-energy tensor”

dJ

J
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Two-timescale equations of motion (first order)

I Represent particle motion with γ(t; t̃, ε):
I γ(t; t̃) ≡ γ(t; t̃, 0) geodesic
I γ(t; t̃, ε) stays close to γ(t; t̃)
I γ(t; εt, ε) geodesic in “effective metric”

g̃ab ≡ gab + εhRab +O(ε2)

I h1ab retarded solution to

G
(1)

ab{h1} = 8πTab1 ,

split into regular hRab and singular hSab:

G
(1)

ab{hR} = 0, G
(1)

ab{hS} = 8πTab1 ,

for distributional Tab1 supported on γ(t; t̃)

γ(t)

γ(t; εt; ε)
=⇒ γ(t; t̃)

γ(t; t̃; ε)
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Flux-balance law

I Asymptotic (average) flux:

Fξ[h1] ≡ lim
T→∞

1

2T

∫
B(t, T )︸ ︷︷ ︸
→Γ(t,T ;r)

J
(2)
ξ{h1,h1}

I Decompose h1ab = hRab + hSab:
I hR,hR: exactly conserved, gives nothing
I hR,hS : ∝ 〈∂Eξ/∂t̃〉+O(ε)

(“local” flux-balance)
I hS ,hS : naïvely divergent ISS

I Result:〈
∂Eξ

∂t̃

〉
=

1

16π

{
Fξ[h1]− ISS +O(ε)

}

Γ(t, T ; r)

γ(t; t̃)

B(t, T )→ H+,I +

t− T

t+ T

A. Grant 5 / 11



Residual term ISS

This term vanishes, for two reasons:

Parity:
I Form of hSab near worldline:

hS ∼ m/r

I Integrand contains odd na’s

I
∫

dΩ na1 · · ·na2k+1 = 0

Dimensional analysis:
I Has same units as [d(paξ

a)/dt] = [ξ]

I Must be:
I Linear in ξa
I Proportional to m2 from hS ∝ m
I Remainder polynomial in γ̇a(t̃) and
Eab, Bab

I No such scalar!〈
∂Eξ

∂t̃

〉
=

1

16π

{
Fξ[h1] +O(ε)

}
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Two-timescale (second order)

I Effective metric: g̃ab = gab + εhRab + ε2hRRab +O(ε3)

I h2ab decomposed into solutions to [Upton & Pound, 2021]

G
(1)

ab{hRR} = −1

2
G
(2)

ab{hR,hR}+ G
(1,1)

ab{hR},

G
(1)

ab{hSR} = −G
(2)

ab{hS ,hR}+ 8πTab2 + G
(1,1)

ab{hS},

G
(1)

ab{hSS} = −1

2
G
(2)

ab{hS ,hS}, [only need off γ(t; t̃)]

where G
(1,1)

ab contains t̃-derivatives

I Tab2 once again only supported on γ(t; t̃)

γ(t; t̃)

γ(t; t̃; ε)
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Further splitting

Further divide h2ab into “nonlinearity”- and “two-timescale”-sourced pieces:

Nonlinearity: ĥ2ab, decomposed as

G
(1)

ab{ĥRR} = −1

2
G
(2)

ab{hR,hR},

G
(1)

ab{ĥSR} = −G
(2)

ab{hS ,hR}+ 8πT̂ab2 ,

G
(1)

ab{ĥSS} = −1

2
G
(2)

ab{hS ,hS},

Two-timescale: ȟ2ab, decomposed as

G
(1)

ab{ȟRR} = G
(1,1)

ab{hR},

G
(1)

ab{ȟSR} = 8πŤab2 + G
(1,1)

ab{hS}

Note: axistationary part of ĥ2ab diverges, but should not affect final answer
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Second order flux-balance

I Flux has higher-order terms:

Fξ[h1, ĥ2] ≡ lim
T→∞

1

2T

∫
B(t, T )︸ ︷︷ ︸
→Γ(t,T ;r)

[
J
(2)
ξ{h1,h1 + 2εĥ2}

+
ε

3
J
(3)
ξ{h1,h1,h1}

]
I Decompose h1ab, ĥ

2
ab:

I All hR and ĥRR: exactly conserved, gives nothing
I One hS or ĥSR, rest hR or ĥRR: related to 〈∂Eξ/∂t̃〉

(complications on next slide)
I Remaining terms: naïvely divergent, vanish like ISS

Γ(t, T ; r)

γ(t; t̃)

B(t, T )→ H+,I +

t− T

t+ T
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Flux-balance laws: less useful at second order?

〈
∂Eξ

∂t̃

〉
=

1

16π

asymptotic fields︷ ︸︸ ︷
Fξ[h1, ĥ2] +ε

〈
F̃ local
ξ [hR] + F̌ local

h,ξ [ȟRR]− F̌ local
T,ξ [Ť2]

〉
︸ ︷︷ ︸

local fields

+O(ε2)

I Where do extra terms come from:
I F̃ local

ξ [hR]: two-timescale expansion/corrections to Eξ definitions

I F̌ local
h,ξ [ȟRR]: hRRab (not ĥRRab ) occurs in effective metric

I F̌ local
T,ξ [Ť2]: Tab2 (not T̂ab2 ) directly related to worldline stress-energy

I How easy is it to compute local fields:
I hRab: needs to be computed anyway (for full first-order self force)
I ȟRRab : more complicated, as it is sourced by h1ab around worldline
I Ťab2 : probably easy?
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Conclusions and future work

I Flux-balance law exists for second-order self-force
for conserved quantities from isometries
I Schwarzschild: all conserved quantities
I Kerr: energy and (axial) angular momentum

(still can handle equatorial/quasispherical orbits)

I Future work:
I Turn into practical flux-balance law

(i.e., determine how bad previous slide is,
compute fluxes in terms of Teukolsky variables)

I Carter constant evolution: Capra talk from 2021
[arXiv:2209.13829] w/ Jordan Moxon
(only first order, only “local flux-balance”)
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