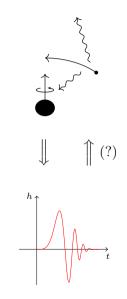
Flux-balance laws from an effective stress-energy tensor

Alexander Grant (with Adam Pound and Jordan Moxon,

based on earlier, preliminary work with Éanna Flanagan, Zeyd Sam, and Jonathan Thompson)

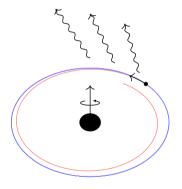

University of Virginia

Capra Meeting July 3rd, 2023

Flux-balance laws

▶ Goal of self-force program: radiation during inspiral

- ▶ BH perturbation theory: motion \implies radiation
- Motion depends on (regularized) fields at body: these are hard to compute!
- ▶ Goal of flux-balance:
 - Derive some aspects of motion w/ asymptotic fields (easier to compute)
 - Exploit symmetries of background spacetime: conserved quantities and currents



Two-timescale formalism (old-fashioned style)

▶ Geodesic motion: constants of motion Q

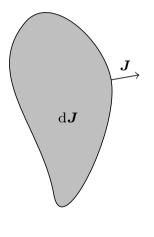
- ▶ Non-geodesic motion: "conserved quantities" $Q(t, \tilde{t})$
 - Slow decay of orbit (this talk): dependence on $\tilde{t} = \varepsilon t$ ("slow time")
 - Rapid oscillations (average over): dependence on t ("fast time")
- ▶ Q: Can one determine $\langle \partial Q / \partial \tilde{t} \rangle$ from fluxes of a conserved current?

A: Yes, for
$$E_{\xi} \equiv p_a \xi^a$$
, up to second order (this talk)

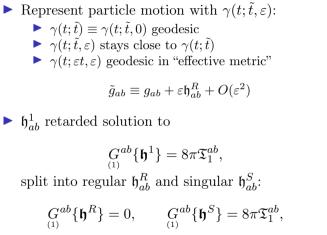
Conserved current

• General functional of g_{ab} :

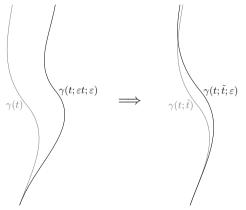
$$(J_{\xi})_{abc}[\boldsymbol{g}] \equiv G^{de}[\boldsymbol{g}]g_{ef}\xi^{f}\epsilon_{dabc}[\boldsymbol{g}]$$


Perform two perturbations:

$$\delta_1\delta_2 \boldsymbol{J}_{\boldsymbol{\xi}} \equiv \boldsymbol{J}_{\boldsymbol{\xi}} \{\delta_1 \boldsymbol{g}, \delta_2 \boldsymbol{g}\} + \boldsymbol{J}_{\boldsymbol{\xi}} \{\delta_1\delta_2 \boldsymbol{g}\}.$$

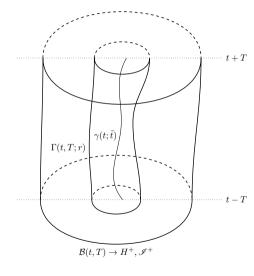

- ▶ Properties of J_{ξ} :
 - ► Symmetric & bilinear in $\delta_1 g_{ab}$, $\delta_2 g_{ab}$
 - Conserved for vacuum perturbations:

$$d_{(2)} \boldsymbol{J}_{\boldsymbol{\xi}} \{ \delta_1 \boldsymbol{g}, \delta_2 \boldsymbol{g} \} = \frac{1}{2} \left[G^{ab}_{(1)} \{ \delta_1 \boldsymbol{g} \} \pounds_{\boldsymbol{\xi}} \delta_2 g_{ab} + (\delta_1 \longleftrightarrow \delta_2) \right] \boldsymbol{\epsilon}$$


Current arises from "effective stress-energy tensor"

Two-timescale equations of motion (first order)

for distributional \mathfrak{T}_1^{ab} supported on $\gamma(t;\tilde{t})$


Flux-balance law

► Asymptotic (average) flux:

$$\mathcal{F}_{\xi}[\boldsymbol{\mathfrak{h}}^{1}] \equiv \lim_{T \to \infty} \frac{1}{2T} \int_{\substack{\mathcal{B}(t,T) \\ \to \Gamma(t,T;r)}} \boldsymbol{J}_{\xi}\{\boldsymbol{\mathfrak{h}}^{1},\boldsymbol{\mathfrak{h}}^{1}\}$$

► Result:

$$\left\langle \frac{\partial E_{\xi}}{\partial \tilde{t}} \right\rangle = \frac{1}{16\pi} \left\{ \mathcal{F}_{\xi}[\mathbf{\mathfrak{h}}^{1}] - I^{SS} + O(\varepsilon) \right\}$$

This term vanishes, for two reasons:

Form of \mathfrak{h}^{S}_{ab} near worldline:

 $\mathfrak{h}^S \sim m/r$

▶ Integrand contains odd n^a 's

$$\int \mathrm{d}\Omega \; n^{a_1} \cdots n^{a_{2k+1}} = 0$$

Dimensional analysis:

► Has same units as $[d(p_a\xi^a)/dt] = [\boldsymbol{\xi}]$

Must be:
Linear in ξ^a
Proportional to m² from **h**^S ∝ m
Remainder polynomial in γ^a(t̃) and ε_{ab}, B_{ab}

 \blacktriangleright No such scalar!

$$\left\langle \frac{\partial E_{\xi}}{\partial \tilde{t}} \right\rangle = \frac{1}{16\pi} \left\{ \mathcal{F}_{\xi}[\mathbf{\mathfrak{h}}^{1}] + O(\varepsilon) \right\}$$

Two-timescale (second order)

- Effective metric: $\tilde{g}_{ab} = g_{ab} + \varepsilon \mathfrak{h}_{ab}^R + \varepsilon^2 \mathfrak{h}_{ab}^{RR} + O(\varepsilon^3)$
- ▶ \mathfrak{h}_{ab}^2 decomposed into solutions to [Upton & Pound, 2021]

$$\begin{split} &G_{(1)}^{ab}\{\boldsymbol{\mathfrak{h}}^{RR}\} = -\frac{1}{2} G_{(2)}^{ab}\{\boldsymbol{\mathfrak{h}}^{R}, \boldsymbol{\mathfrak{h}}^{R}\} + G_{(1,1)}^{ab}\{\boldsymbol{\mathfrak{h}}^{R}\}, \\ &G_{(1)}^{ab}\{\boldsymbol{\mathfrak{h}}^{SR}\} = -G_{(2)}^{ab}\{\boldsymbol{\mathfrak{h}}^{S}, \boldsymbol{\mathfrak{h}}^{R}\} + 8\pi \mathfrak{T}_{2}^{ab} + G_{(1,1)}^{ab}\{\boldsymbol{\mathfrak{h}}^{S}\}, \\ &G_{(1)}^{ab}\{\boldsymbol{\mathfrak{h}}^{SS}\} = -\frac{1}{2} G_{(2)}^{ab}\{\boldsymbol{\mathfrak{h}}^{S}, \boldsymbol{\mathfrak{h}}^{S}\}, \quad \text{[only need off } \gamma(t; \tilde{t})] \end{split}$$

where $\underset{(1,1)}{G}{}^{ab}$ contains \tilde{t} -derivatives

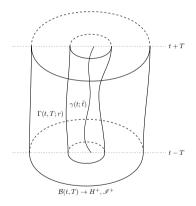
• \mathfrak{T}_2^{ab} once again only supported on $\gamma(t; \tilde{t})$

Further splitting

Further divide \mathfrak{h}_{ab}^2 into "nonlinearity"- and "two-timescale"-sourced pieces:

$$\begin{array}{ll} \underline{\text{Nonlinearity:}} \ \hat{\mathfrak{h}}_{ab}^{2}, \ \text{decomposed as} \\ G_{(1)}^{ab} \{ \hat{\mathfrak{h}}^{RR} \} &= -\frac{1}{2} G_{(2)}^{ab} \{ \mathfrak{h}^{R}, \mathfrak{h}^{R} \}, \\ G_{(1)}^{ab} \{ \hat{\mathfrak{h}}^{SR} \} &= -G_{(2)}^{ab} \{ \mathfrak{h}^{S}, \mathfrak{h}^{R} \} + 8\pi \hat{\mathfrak{T}}_{2}^{ab}, \\ G_{(1)}^{ab} \{ \hat{\mathfrak{h}}^{SS} \} &= -\frac{1}{2} G_{(2)}^{ab} \{ \mathfrak{h}^{S}, \mathfrak{h}^{S} \}, \\ \end{array}$$

Note: axistationary part of $\hat{\mathfrak{h}}_{ab}^2$ diverges, but should not affect final answer


Second order flux-balance

► Flux has higher-order terms:

$$\mathcal{F}_{\xi}[\boldsymbol{\mathfrak{h}}^{1}, \hat{\boldsymbol{\mathfrak{h}}}^{2}] \equiv \lim_{T \to \infty} \frac{1}{2T} \int_{\underset{\rightarrow \Gamma(t,T;r)}{\underbrace{\mathcal{B}(t,T)}}} \begin{bmatrix} \boldsymbol{J}_{(2)} \boldsymbol{\xi} \{\boldsymbol{\mathfrak{h}}^{1}, \boldsymbol{\mathfrak{h}}^{1} + 2\varepsilon \hat{\boldsymbol{\mathfrak{h}}}^{2} \} \\ + \frac{\varepsilon}{3} \underbrace{\boldsymbol{J}}_{(3)} \boldsymbol{\xi} \{\boldsymbol{\mathfrak{h}}^{1}, \boldsymbol{\mathfrak{h}}^{1}, \boldsymbol{\mathfrak{h}}^{1} \} \end{bmatrix}$$

► Decompose \mathfrak{h}_{ab}^1 , $\hat{\mathfrak{h}}_{ab}^2$:

- ▶ All \mathbf{h}^{R} and $\hat{\mathbf{h}}^{RR}$: exactly conserved, gives nothing
- One \mathfrak{h}^{S} or $\mathfrak{\hat{h}}^{SR}$, rest \mathfrak{h}^{R} or $\mathfrak{\hat{h}}^{RR}$: related to $\langle \partial E_{\xi} / \partial \tilde{t} \rangle$ (complications on next slide)
- $\blacktriangleright\,$ Remaining terms: naïvely divergent, vanish like I^{SS}

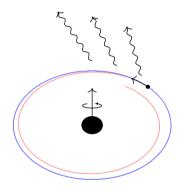
Flux-balance laws: less useful at second order?

$$\left\langle \frac{\partial E_{\xi}}{\partial \tilde{t}} \right\rangle = \frac{1}{16\pi} \underbrace{\mathcal{F}_{\xi}[\mathbf{\mathfrak{h}}^{1}, \hat{\mathbf{\mathfrak{h}}}^{2}]}_{\text{local}[\mathbf{\mathfrak{h}}^{R}]} + \varepsilon \underbrace{\left\langle \tilde{\mathcal{F}}_{\xi}^{\text{local}}[\mathbf{\mathfrak{h}}^{R}] + \check{\mathcal{F}}_{h,\xi}^{\text{local}}[\check{\mathbf{\mathfrak{h}}}^{RR}] - \check{\mathcal{F}}_{T,\xi}^{\text{local}}[\check{\mathbf{\mathfrak{T}}}_{2}] \right\rangle}_{\text{local fields}} + O(\varepsilon^{2})$$

► Where do extra terms come from:

- ▶ $\tilde{\mathcal{F}}^{\text{local}}_{\xi}[\mathfrak{h}^{R}]$: two-timescale expansion/corrections to E_{ξ} definitions
- $\blacktriangleright \check{\mathcal{F}}_{h,\xi}^{\text{local}}[\check{\mathfrak{h}}^{RR}]: \, \mathfrak{h}_{ab}^{RR} \; (not \; \hat{\mathfrak{h}}_{ab}^{RR}) \text{ occurs in effective metric}$
- $\check{\mathcal{F}}_{T,\xi}^{\text{local}}[\check{\mathfrak{T}}_2]$: \mathfrak{T}_2^{ab} (not $\hat{\mathfrak{T}}_2^{ab}$) directly related to worldline stress-energy

▶ How easy is it to compute local fields:


- ▶ $\check{\mathfrak{h}}_{ab}^{RR}$: more complicated, as it is sourced by \mathfrak{h}_{ab}^1 around worldline
- $\check{\mathfrak{T}}_2^{ab}$: probably easy?

Conclusions and future work

- Flux-balance law exists for second-order self-force for conserved quantities from isometries
 - Schwarzschild: *all* conserved quantities
 - Kerr: energy and (axial) angular momentum (still can handle equatorial/quasispherical orbits)

► Future work:

- Turn into *practical* flux-balance law (i.e., determine how bad previous slide is, compute fluxes in terms of Teukolsky variables)
- Carter constant evolution: Capra talk from 2021 [arXiv:2209.13829] w/ Jordan Moxon (only first order, only "local flux-balance")

