

Perturbations of Rotating Black Holes in Modified Gravity

Perimeter: Michael LaHaye, Huan Yang

UT Austin: Asad Hussain, Aaron Zimmerman

UIUC: Pratik Wagle, Nicolas Yunes

(Image credit: C.V. Vishveshwara)

DONGJUN LI (DLLI@CALTECH.EDU)

GR has its limitation

- \Box Incompatibility between GR and QM \rightarrow Unified theories, e.g., loop gravity, string theory
- □ Observational anomalies, e.g., matter-antimatter asymmetry

LISA (Image credit: Simon Barke)

Will be launched ~ 2030s! (Baker et al., 2019)

(Image credit: NASA)

An EFT approach:

- $\zeta \rightarrow \text{modified gravity expansion}$
- $\epsilon \to \mathrm{GW}$ expansion

Li, Wagle, Chen, & Yunes, PhysRevX.13.021029 (arXiv 2206.10652)

Background spacetime in GR, type D always!

1

GWs in GR

$$\Psi = \Psi^{(0,0)}(\mathbf{x}) + \zeta \Psi^{(1,0)}(\mathbf{x}) + \epsilon \Psi^{(0,1)}(\mathbf{x},t) + \zeta \epsilon \Psi^{(1,1)}(\mathbf{x},t)$$

The stationary part of spacetime in bGR, can be algebraically general

Leading correction to GWs due to bGR

Modified Teukolsky equation

$$H_0^{(0,0)} \Psi_0^{(1,1)} = \mathcal{S}_{0,D}^{(1,1)} + \mathcal{S}_{0,\text{non-D}}^{(1,1)} + \mathcal{S}_{1,\text{non-D}}^{(1,1)} + \mathcal{S}^{(1,1)}$$

$$H_0 = (D - \rho + \cdots) (\Delta - 4\gamma + \cdots) + \cdots$$

$$H_1 = (D - \rho + \cdots) (\delta - 4\tau - 2\beta) + \cdots$$

Theory-independent source terms (purely geometrical)

$$\begin{split} \mathcal{S}_{0,\mathrm{D}}^{(1,1)} \sim H_0^{(1,0)} \Psi_0^{(0,1)} \sim h^{(1,0)} \Psi_0^{(0,1)} & \text{Non-GR type D} \\ \mathcal{S}_{i,\mathrm{non-D}}^{(1,1)} \sim H_i^{(0,1)} \Psi_i^{(1,0)} \sim h^{(0,1)} \Psi_i^{(1,0)} & \text{Non-type-D} \end{split}$$

Theory-dependent source terms (effective $T^{\mu\nu}$) Extra fields $S = \mathcal{E}_2 S_2 - \mathcal{E}_1 S_1 \sim h^{(0,1)} \vartheta^{(1,0)} + g^{(0,0)} \vartheta^{(1,1)}$ $\mathcal{E}_2 = \Psi_2 (D - \rho + \cdots) \Psi_2^{-1} \cdots, S_2 = (\delta - 2\beta + 2\bar{\pi}) \Phi_{01} + \cdots$

Follow Chandrasekhar: rotate away $\Psi_{1,3}^{(1,1)}$

Works for any linear perturbation of a type D spacetime!

$$S_{\text{geo}}^{(1,1)} = S_{0,\text{D}}^{(1,1)} + S_{0,\text{non-D}}^{(1,1)} + S_{1,\text{non-D}}^{(1,1)}$$

 $h^{(0,1)}$ needs metric reconstruction, but only for GR GWs $h^{(0,1)}_{\mu\nu} = \left(\mathcal{O}_{\mu\nu} + \bar{\mathcal{O}}_{\mu\nu}\mathcal{C}\right)\Psi_0^{(0,1)}$

(Li, Wagle, Chen, & Yunes, arXiv 2206.10652)

An alternative tensorial approach

> Wald's formalism in GR (Wald, 1978)

$$\begin{split} H\mathcal{T}\left[h_{cd}\right] &= H\left[\psi_{s}\right] = \mathcal{S}^{ab}\mathcal{E}_{ab}\left[h_{cd}\right]\\ H: \text{Teukolsky operator} \qquad \mathcal{E}_{ab}: \text{Einstein tensor}\\ \mathcal{T}: \text{convert metric to Weyl scalars}\\ \mathcal{S}^{ab}: \text{convert EE to the Teukolsky equation} \end{split}$$

> An extension to bGR theories (Hussain & Zimmerman, 2022)

- > Apply same S^{ab} operator to the EE in bGR theories
- $\succ S^{ab(0,0)}$ converts EE at $\mathcal{O}(\zeta^1, \epsilon^1)$ to Teukolsky equation at $\mathcal{O}(\zeta^1, \epsilon^1) \implies \Psi_0^{(1,1)}$ naturally decouples
- $\succ S^{ab(0,1)} \text{ converts EE at } \mathcal{O}(\zeta^1, \epsilon^0) \text{ to source terms (similar to } S^{(1,1)}, S^{(1,1)}_{\text{geo}}),$ similarly for $S^{ab(1,0)}$

(Hussain & Zimmerman, arXiv 2206.10653)

Higher-order (modified) Teukolsky formalism

Connection to 2nd order Teukolsky equation in GR (Campanelli & Lousto, 1999)

 \Box Couplings between $h^{(0,1)}$ and $h^{(1,0)} \longrightarrow$ Self-couplings of $h^{(0,1)}$

□ Many pre-developed techniques, e.g., metric reconstruction → Our formalism is very feasible !

- Extension of modified Teukolsky equation beyond $\mathcal{O}(\zeta^1, \epsilon^1)$
 - □ All the steps can be iterated to higher orders, e.g., rotate away $\Psi_{1,3}^{(m,n)}$ for $m \ge 0, n \ge 1$

 \Box Modified Teukolsky equations at $\mathcal{O}(\zeta^m, \epsilon^n)$:

$$H_0^{(0,0)}\Psi_0^{(m,n)} = \mathcal{S}_{geo}^{(m,n)} + \mathcal{S}^{(m,n)}$$
$$\zeta = 0$$

Consistent with Campanelli & Lousto, 1999

Metric Reconstruction (vacuum)

- Direct reconstruction (Chandrasekhar, 1983; Loutrel et al. in 2020)
- CCK-Ori (Cohen & Kegeles, 1975; Kegeles & Cohen, 1978; Chrzanowski, 1975; Ori, 2003)
 - $\Box \text{ An inversion of Wald's relation: } \begin{bmatrix} h_{ab} = \operatorname{Re} \left(\mathcal{S}^{\dagger} \Phi \right)_{ab}, \, \mathrm{P}^{4} \bar{\Phi} = -\Psi_{0} \end{bmatrix}$
 - **□** Relies on IRG $(l^{\mu}h_{\mu\nu} = 0, h = 0)$ or ORG $(n^{\mu}h_{\mu\nu} = 0, h = 0)$
 - □ Reconstruct NP quantities (Campanelli & Lousto, 1999)

Metric Reconstruction (non-vacuum)

- Necessary for nonlinear effects in both GR (e.g., 2nd order self-force) and bGR (even just EMRIs)
- Lorenz gauge (Dolan et al., 2022; Dolan et al., 2023)

□ CCK with an additional gauge transformation

 $\xi^{\mu} = \zeta^2 \nabla_{\nu} H^{\mu\nu} - g^{\mu\nu} \nabla_{\nu} \chi$

 \Box (Spin 0 + Spin 1) [gauge in vacuum] + Spin 2 + completion (non-radiative) pieces

□ Free from extended gauge discontinuities; works for point-particle source

➢ GHZ (Green, Holland, & Zimmerman, 2020; Toomani, 2022)

CCK with an additional correction tensor

 $h_{ab} = \left(\mathcal{L}_{\xi}g\right)_{ab} + \dot{g}_{ab} + x_{ab} + \operatorname{Re}\left(\mathcal{S}^{\dagger}\Phi\right)_{ab}$

 \Box ξ : transform to the shadowless gauge

☐ Regular enough for 2nd order self-force; works for compact source

with Michael LaHaye, Colin Weller, Huan Yang

Example: QNMs in Higher-derivative Gravity

- > Up to $\mathcal{O}(\chi^6)$, the results are valid for $\chi \lesssim 0.4$
- > Matches well with metric perturbations (mismatch $\leq 5\%$)!

-0.10

-0.12

-0.14

-0.16

-0.18

-0.20

-0.10

-0.05

 $\operatorname{Im}(\delta\omega)$

- \succ Computed from both $\Psi_{0,4}$'s equations
- > Intriguing:

• $\delta \omega_{+2}|_{C_{+2} \to 0}$

 $\delta \omega_{-2}|_{C_{-2} \to 0}$

 $\delta\omega_{-2}|_{C_{-2}\to\infty}$

-0.05

0.00

 χ

0.05

0.10

Parity violating

0.25

0.15

0.10

-0.10

 ${\rm Re}(\delta\omega)$

Results from Ψ_0 's equation are less accurate

A similar study in dCS: Wagle, Li, Chen, & Yunes, in prepare

Thank y u!

DONGJUN LI (DLLI@CALTECH.EDU)