FACULTY
OF MATHEMATICS
AND PHYSICS
Charles University

Astronomical Institute

of the Czech Academy of Sciences
$5^{\text {th }}$ of July, 2023 $26^{\text {th }}$ Capra Meeting Copenhagen

COMPARING EFFECTIVE-ONE-BODY AND GRAVITATIONAL SELF-FORCE RESULTS FOR BLACK HOLE BINARIES WITH A SPINNING SECONDARY

OUTLINE

- Motivation
- Quick introduction to the effective-one-body (EOB) formalism
- Building on previous results: gauge-invariant analysis
- Comparison between the EOB model TEOBResumS and gravitational self-force (GSF) results for black hole binaries with a spinning secondary
- Modifying the EOB spin-orbit sector (spinning particle info) to improve the agreement with GSF

LOOKING FORWARD

- The next generation of gravitational wave detectors (ET, CE, LISA) will allow us to detect intermediate- and extreme-mass-ratio inspirals
- Numerical relativity simulations become increasingly difficult to be performed...
- EOB models could provide fast and reliable waveforms, but they need to be tuned and benchmarked towards exact results \Rightarrow comparing to GSF allows to improve EOB
- Already improved quasi-circular nonspinning version of TEOBResumS thanks to 2GSF results (arXiv:2208.02055v2)

THE EFFECTIVE-ONE-BODY FORMALISM

mapping the two-body dynamics in general relativity in the motion of a particle with the reduced mass of the system moving in an effective metric that is the deformation of a Schwarzschild or Kerr black hole

Hamiltonian: found by mapping the "energy levels" of the real problem at a given post-Newtonian (PN) order to the effective ones

THEORETICAL FRAMEWORK

- Hamiltonian: $\hat{H}_{\mathrm{EOB}} \equiv \frac{H_{\mathrm{EOB}}}{\mu}=\frac{1}{\nu} \sqrt{1+2 \nu\left(\hat{H}_{\mathrm{eff}}-1\right)}$

$$
\hat{H}_{\mathrm{eff}}=\sqrt{\sqrt{p_{p_{s}}^{2}+A\left(1+\frac{p_{\varphi}^{2}}{r_{c}^{2}}+2 \nu(4-3 \nu) \frac{p_{r_{*}}^{4}}{r_{c}^{2}}\right)}+p_{p_{\varphi}}\left(G_{S} \hat{S}+G_{S_{\psi}} \hat{S}_{*}\right)} \text { orbital + spin-orbit }
$$

- Hamiltonian equations of motion complemented by the radiation reaction:

$$
\begin{aligned}
\frac{d \varphi}{d t} & =\frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{\varphi}}=\Omega \\
\frac{d r}{d t} & =\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial p_{r_{*}}} \\
\frac{d p_{\varphi}}{d t} & =\hat{\mathscr{F}}_{\varphi}=\hat{\mathscr{F}}_{\varphi}^{\infty}+\hat{\mathscr{F}}_{\varphi}^{\mathrm{H}} \\
\frac{d p_{r_{*}}}{d t} & =-\left(\frac{A}{B}\right)^{1 / 2} \frac{\partial \hat{H}_{\mathrm{EOB}}}{\partial r}
\end{aligned}
$$

the phase space variables enter the evaluation of the waveform:

$$
h_{+}-i h_{\times}=\frac{1}{\mathscr{D}_{L}} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} h_{\ell m-2} Y_{\ell m}
$$

GAUGE-INVARIANT ANALYSIS: Q_{ω}

- Adiabaticity parameter: $Q_{\omega} \equiv \frac{\omega^{2}}{\dot{\omega}} \quad \omega \equiv \omega_{22}=\dot{\phi}_{22}$
- Q_{ω} >> 1 adiabatic motion
- Phase difference: $\Delta \phi_{\left(\omega_{1}, \omega_{2}\right)}=\int_{\omega_{1}}^{\omega_{2}} Q_{\omega} d \log \omega$
- Expanding in the symmetric mass ratio:

$$
Q_{\omega}(\omega ; \nu)=\underbrace{\frac{Q_{\omega}^{(0)}(\omega)}{\nu}}+\underbrace{Q_{\omega}^{(1)}(\omega)}+\underbrace{\nu Q_{\omega}^{(2)}(\omega)}+O\left(\nu^{2}\right) \begin{aligned}
& \begin{array}{l}
\text { fitting the coefficients } \\
\text { for a set of mass ratios } \\
\text { at fixed values of the frequency }
\end{array}
\end{aligned}
$$

PREVIOUS WORK: NONSPINNING BINARIES

Some (unpublished) updates after arXiv:2208.02055v2

- Adding $\ell=9,10$ to the infinity flux
- Shorter frequency interval:

$$
\omega=[0.045,0.12] \underbrace{f=[0.003,0.007]}_{\text {if } m_{2}=10 M_{\odot}}(\mathrm{Hz})
$$

- Corresponding to ~ 1.2 years of EOB evolution, $\sim 1.5 \times 10^{5}$ cycles
- Integrated phase differences:

Standard: $\Delta \phi \sim 2.99$ Improved: $\Delta \phi \sim-0.74$

Q_{ω} EXPANSION WITH SPIN

- Q_{ω} can be evaluated analytically for circular orbits (in EOB)
- χ_{2} is the dimensionless spin of the smaller black hole
- Memo: $\hat{H}_{\text {eff }}=\sqrt{\sqrt{p_{k_{*}}^{2}+A\left(1+\frac{p_{\varphi}^{2}}{r_{c}^{2}}+2 \nu(4-3 \nu) \frac{p_{r_{c}}^{4}}{r_{c}^{2}}\right)}}+p_{\varphi}\left(G_{S} \hat{S}+G_{S_{*}} \hat{S}_{*}\right) \quad$ orbital + spin-orbit

$$
\begin{aligned}
& A(u ; \nu)=1-2 u+\nu a_{1}(u) \\
& S=S_{1}+S_{2} \quad \hat{S} \equiv \frac{S}{M^{2}} \quad S_{*}=\frac{M_{2}}{M_{1}} S_{1}+\frac{M_{1}}{M_{2}} S_{2} \quad \hat{S}_{*} \equiv \frac{S_{*}}{M^{2}} \\
& G_{S}=G_{S}^{(0)}+\nu G_{S}^{(1)}+\nu^{2} G_{S}^{(2)} \quad G_{S_{*}}=G_{S_{*}}^{(0)}+\nu G_{S_{*}}^{(1)}+\nu^{2} G_{S_{*}}^{(2)} \\
& \tilde{G} \equiv G_{S} \hat{S}+G_{S_{*}} \hat{S}_{*} \simeq \chi_{2}\left(\nu G_{S_{*}}^{(0)}+\nu^{2}\left(G_{S}^{(0)}+G_{S_{*}}^{(1)}\right)\right)+O\left(\nu^{3}\right)
\end{aligned}
$$

Q_{ω} EXPANSION WITH SPIN

- Expanding the flux up to v^{2} :

$$
\mathscr{F}=\mathscr{F}_{1 \mathrm{SF}}+\nu \mathscr{F}_{2 \mathrm{SF}}+\nu^{2} \mathscr{F}_{3 \mathrm{SF}}+\chi_{2}\left(\nu \mathscr{F}_{2 \mathrm{SF}}^{\mathrm{spin}}+\nu^{2} \mathscr{F}_{3 \mathrm{SF}}^{\mathrm{spin}}\right)
$$

- Putting everything into Q_{ω} yields analytical expressions for $\mathrm{Q}_{\boldsymbol{\omega}}{ }^{(0)}, \mathrm{Q}_{\boldsymbol{\omega}}{ }^{(1)}, \mathrm{Q}_{\boldsymbol{\omega}}{ }^{(2)}$ that show their dependence on the flux, the 1SF term into the potential, and the secondary spin:

$$
\left\{\begin{array}{l}
Q_{\omega}^{(0)}=Q_{\omega}^{(0)}\left(\mathscr{F}_{1 \mathrm{SF}}\right) \\
Q_{\omega}^{(1)}=Q_{\omega}^{(1)}\left(a_{1}, \mathscr{F}_{1 \mathrm{SF}}, \mathscr{F}_{2 \mathrm{SF}}, \chi_{2} \cdot \mathscr{F}_{2 \mathrm{SF}}^{\mathrm{spin}}, \chi_{2}\right) \\
Q_{\omega}^{(2)}=Q_{\omega}^{(2)}\left(a_{1}, \mathscr{F}_{1 \mathrm{SF}}, \mathscr{F}_{2 \mathrm{SF}}, \chi_{2} \cdot \mathscr{F}_{2 \mathrm{SF}}^{\mathrm{sp}}, \mathscr{F}_{3 \mathrm{SF}}, \chi_{2} \cdot \mathscr{F}_{3 \mathrm{SF}}^{\mathrm{spin}}, \chi_{2}, \chi_{2}^{2}\right)
\end{array}\right.
$$

$$
a_{0}
$$

- $\mathrm{Q}_{\boldsymbol{\omega}}{ }^{(0)}$ has no dependence on χ_{2}, but there is a small (numerical) residual

$\mathrm{Q}_{\omega}{ }^{(1)}$

$\mathrm{Q}_{\omega}{ }^{(1)}$

- Perfect symmetry between positive and negative values of the secondary spin since $Q_{\omega}{ }^{(1)}$ is linear in χ_{2}
- From the physical point of view: the fact that positive χ_{2} values have a larger $Q_{\omega}{ }^{(1)}$ means the evolution is more adiabatic...
A positive spin-orbit coupling yields a repulsive pull that delays the plunge (Nature behaving in the same way on many different scales!)

$$
\mathrm{Q}_{\omega}{ }^{(2)}
$$

COMPARING $Q_{\omega}{ }^{(2)}: E O B-G S F$

- Asymmetry due to nonlinear χ_{2}-dependence of $Q_{\omega}{ }^{(2)}$
- The EOB $\left(\chi_{2}\right)^{2}$-dependence is smaller than the GSF one (less asymmetry in EOB $\left.\mathrm{Q}_{\omega}{ }^{(2)}\right) \Rightarrow$ the EOB $\mathrm{Q}_{\omega}{ }^{(2)}$ is more/less adiabatic than the GSF one for negative/positive spins

INSIGHT INTO THE SPIN-ORBIT SECTOR

- Current version of the gyro-gravitomagnetic functions:

$$
\begin{aligned}
& G_{S}=G_{S}^{0} \hat{G}_{S}, \quad G_{S}^{0}=2 u u_{c}^{2} \quad \begin{array}{c}
\text { leading-order test-mass }
\end{array} \\
& G_{S_{*}}=G_{S_{*}}^{0} \hat{G}_{S_{*}}, G_{S_{*}}^{0}=(3 / 2) u_{c}^{2} \quad \begin{array}{c}
\text { expressions are factorized out and } \\
\text { the rest is (inverse) resummed }
\end{array} \\
& \hat{G}_{S}=\frac{1}{1+c_{10} u_{c}+c_{20} u_{c}^{2}+c_{3} u_{c}^{3}+c_{02} p_{r^{*}}^{2}+c_{12} u_{c} p_{r^{*}}^{2}+c_{04} p_{r^{*}}^{4}} \\
& \hat{G}_{S_{*}}=\frac{1}{1+c_{10}^{*} u_{c}+c_{20}^{*} u_{c}^{2}+c_{30}^{*} u_{c}^{3}+c_{40}^{*} u_{c}^{4}+c_{02}^{*} p_{r^{*}}^{2}+c_{12}^{*} u_{c} p_{r^{*}}^{2}+c_{04}^{*} p_{r^{*}}^{4}}
\end{aligned}
$$

- All $\mathrm{c}_{\mathrm{ij}} / \mathrm{c}^{*}{ }_{\mathrm{ij}}$ coefficients depend on v except from $\mathrm{c} 30^{*}$ and $\mathrm{c} 40^{*}$ (test-mass terms coming from the expansion of the exact $\mathrm{G}_{\mathrm{s}^{*}}$ of a spinning particle on Schwarzschild)

DIFFERENT CHOICE FOR $\mathrm{G}_{\mathrm{s} *}$: ANTI-DJS GAUGE

Different version (obtained in "anti-Damour-Jaranowski-Schäfer" gauge):

$$
\begin{align*}
G_{S_{*}}^{K}=\frac{1}{\left(r_{c}^{K}\right)^{2}}\{ & \frac{\sqrt{A^{K}}}{\sqrt{Q^{K}}}\left[1-\frac{\left(r_{c}^{K}\right)^{\prime}}{\sqrt{B^{K}}}\right]+ \\
& \left.+\frac{r_{c}^{K}}{2\left(1+\sqrt{Q^{K}}\right)} \frac{\left(A^{K}\right)^{\prime}}{\sqrt{A^{K} B^{K}}}\right\}, \tag{15}
\end{align*}
$$

(see arXiv:1911.10818v2)

- The factored-out $\mathrm{G}_{\mathrm{S}^{*}}$ is now formally equal as the complete spinning-particle expression BUT all the Kerr functions (r_{c}, A, B, Q) are replaced with the EOB v-dependent ones
- The residual functions are again resummed with their inverse Taylor representation

WORK IN PROGRESS...

χ_{2}	$\Delta \phi_{\mathrm{DJS}}^{\mathrm{EOBGF}}$	$\Delta \phi_{\text {antiDJS }}^{\text {EOBGSF }}$
0.5	-0.1037	-0.0886
-0.5	0.0477	0.0338
0.9	-0.1434	-0.0955
-0.9	0.1137	0.0648

Time-domain accumulated dephasings for $q=500$ I got some
time ago, before realising the spinning branch of the code was running without 21 contribution in the horizon flux

$\Delta \mathrm{Q}_{\omega}{ }^{(0)}$ (EOB-GSF) was different between spin and nonspin!

"THE BLANKET IS SHORT"

adding the 21 contribution into the horizon flux allows for a consistent

... but changes all the dephasings! The new $\mathrm{G}_{\mathrm{s} *}$ seems to improve

χ_{2}	$\Delta \phi_{\text {DJS }}^{\text {EOBGSF }}$	$\Delta \phi_{\text {antiDJS }}^{\text {EOBGSF }}$
0.5	0.18843	0.20739
-0.5	0.34057	0.32179
0.9	0.1499	0.19796
-0.9	0.42221	0.37256

CONCLUSIONS AND FUTURE WORK

- Nonspinning EOB model good for $q=50000$
- Spinning secondary: good EOB/GSF agreement in $\mathrm{Q}_{\omega}{ }^{(0)}$ and $\mathrm{Q}_{\boldsymbol{\omega}}{ }^{(1)}$, but adding more spinning-particle analytical information into the conservative sector doesn't help if we don't improve the flux as well
- On a different note: could choose better integration scheme + will consider some speed-up technique at some point (ML?)
- Everything EMRI evolution needs: eccentricity, precession, environment, resonances... most effects are easy to be incorporated in EOB, but we can only improve by interfacing with others!

BACKSLIDES

COMPARING $\mathrm{Q}_{\omega}{ }^{(1)}$ (EOB-GSF)

- The difference is mostly negative towards the end of the evolution (EOB contribution less adiabatic than the GSF one)

GSF: SPIN - NONSPIN

- As expected, $Q_{\omega}{ }^{(1)}$ depends linearly on $\chi_{2}, Q_{\omega}{ }^{(2)}$ doesn't

EOB: SPIN - NONSPIN

- As expected, $\mathrm{Q}_{\omega}{ }^{(1)}$ depends linearly on $\chi_{2}, \mathrm{Q}_{\omega}{ }^{(2)}$ doesn't

