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OUTLINE

• Motivation
• Quick introduction to the effective-one-body (EOB) formalism
• Building on previous results: gauge-invariant analysis
• Comparison between the EOB model TEOBResumS and 

gravitational self-force (GSF) results for black hole binaries 
with a spinning secondary

• Modifying the EOB spin-orbit sector (spinning particle info) 
to improve the agreement with GSF
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LOOKING FORWARD

• The next generation of gravitational wave detectors (ET, CE, LISA) will 
allow us to detect intermediate- and extreme-mass-ratio inspirals

• Numerical relativity simulations become increasingly difficult to be 
performed…

• EOB models could provide fast and reliable waveforms,
but they need to be tuned and benchmarked towards exact results
      comparing to GSF allows to improve EOB 

• Already improved quasi-circular nonspinning version of TEOBResumS 
thanks to 2GSF results (arXiv:2208.02055v2)
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https://arxiv.org/abs/2208.02055v2


THE EFFECTIVE-ONE-BODY FORMALISM
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mapping the two-body dynamics in general relativity in the motion of a particle 
with the reduced mass of the system moving in an effective metric 

that is the deformation of a Schwarzschild or Kerr black hole
 

q = m1
m2

, m1 > m2Mass ratio Symmetric mass ratio ν ≡ m1m2
(m1 + m2)2

Hamiltonian: found by mapping the “energy levels” of the real problem 
at a given post-Newtonian (PN) order to the effective ones



dpφ

dt
= ℱ̂φ = ℱ̂∞

φ + ℱ̂H
φ h+ − ih× = 1

#L

∞

∑
ℓ=2

ℓ

∑
m=−ℓ

hℓm −2Yℓm

THEORETICAL FRAMEWORK
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• Hamiltonian equations of motion complemented by the radiation reaction:

• Hamiltonian:

orbital + spin-orbit

the phase space variables enter 
the evaluation of the waveform: 

ĤEOB ≡ HEOB
μ

= 1
ν

1 + 2ν (Ĥeff − 1)

Ĥeff = p2
r*

+ A (1 +
p2

φ

r2c
+ 2ν(4 − 3ν) p4

r*

r2c ) + pφ (GS ̂S + GS*
̂S*)

dpr*

dt
= − ( A

B )
1/2 ∂ĤEOB

∂r

dr
dt

= ( A
B )

1/2 ∂ĤEOB
∂pr*

dφ
dt

= ∂ĤEOB
∂pφ

= Ω

multipoles



GAUGE-INVARIANT ANALYSIS: Q𝝎
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• Adiabaticity parameter: 
• Q𝝎>> 1 adiabatic motion
• Phase difference:

• Expanding in the symmetric mass ratio:

fitting the coefficients 
for a set of mass ratios 

at fixed values of the frequency

0PA 1PA 2PA

Qω(ω; ν) = Q(0)
ω (ω)

ν
+ Q(1)

ω (ω) + νQ(2)
ω (ω) + O(ν2)

Qω ≡ ω2

·ω
ω ≡ ω22 = ·ϕ22

Δϕ(ω1,ω2) = ∫
ω2

ω1

Qω d log ω



PREVIOUS WORK: NONSPINNING BINARIES
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Some (unpublished) updates 
after arXiv:2208.02055v2
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q = 50000

`EOB
max = 8

`EOB
max = 10

• Adding ℓ = 9, 10 to the infinity flux

• Shorter frequency interval:

• Corresponding to ~1.2 years of EOB 
evolution, ~1.5 ⨯ 105 cycles

• Integrated 
phase differences: 

Standard: ∆𝜙 ~ 2.99
Improved:  ∆𝜙 ~ -0.74

ω = [0.045,0.12] f = [0.003,0.007] (Hz)

if m2 = 10M⊙

https://arxiv.org/abs/2208.02055v2


Q𝝎 EXPANSION WITH SPIN
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• Q𝝎 can be evaluated analytically for circular orbits (in EOB)
• 𝜒2 is the dimensionless spin of the smaller black hole 

• Memo:

A(u; ν) = 1 − 2u + νa1(u)
S = S1 + S2 ̂S ≡ S

M2
S* = M2

M1
S1 + M1

M2
S2 ̂S* ≡ S*

M2

GS = G(0)
S + νG(1)

S + ν2G(2)
S GS*

= G(0)
S*

+ νG(1)
S*

+ ν2G(2)
S*

G̃ ≡ GS ̂S + GS*
̂S* ≃ χ2 (ν G(0)

S*
+ ν2 (G(0)

S + G(1)
S* )) + O(ν3)

orbital + spin-orbitĤeff = p2
r*

+ A (1 +
p2

φ

r2c
+ 2ν(4 − 3ν) p4

r*

r2c ) + pφ (GS ̂S + GS*
̂S*)



Q𝝎 EXPANSION WITH SPIN
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• Expanding the flux up to 𝜈2:

• Putting everything into Q𝝎 yields analytical expressions for 
Q𝝎

(0) , Q𝝎
(1) , Q𝝎

(2)  that show their dependence on the flux, 
the 1SF term into the potential, and the secondary spin:

ℱ = ℱ1SF + ν ℱ2SF + ν2 ℱ3SF + χ2 (ν ℱspin
2SF + ν2 ℱspin

3SF)

Q(0)
ω = Q(0)

ω (ℱ1SF)
Q(1)

ω = Q(1)
ω (a1 , ℱ1SF , ℱ2SF , χ2 ⋅ ℱspin

2SF , χ2)
Q(2)

ω = Q(2)
ω (a1 , ℱ1SF , ℱ2SF , χ2 ⋅ ℱspin

2SF , ℱ3SF , χ2 ⋅ ℱspin
3SF , χ2 , χ2

2)



Q𝝎
(0)
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• Q𝝎
(0) has no dependence on 𝜒2, but there is a small (numerical) residual
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Q𝝎
(1)
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Q𝝎
(1)
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• Perfect symmetry between positive and negative values 
of the secondary spin since Q𝝎

(1) is linear in 𝜒2

• From the physical point of view: the fact that positive 𝜒2 
values have a larger Q𝝎

(1) means the evolution is more 
adiabatic…
A positive spin-orbit coupling yields a repulsive pull that 
delays the plunge (Nature behaving in the same way on 
many different scales!)



Q𝝎
(2)
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COMPARING Q𝝎
(2) : EOB - GSF
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• Asymmetry due to 
nonlinear 𝜒2-dependence of 
Q𝝎

(2) 
• The EOB (𝜒2)2-dependence 

is smaller than the GSF one 
(less asymmetry in EOB 
Q𝝎

(2) )        the EOB Q𝝎
(2)  

is more/less adiabatic than 
the GSF one for 
negative/positive spins
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INSIGHT INTO THE SPIN-ORBIT SECTOR
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• Current version of the gyro-gravitomagnetic functions:  

GS = G0
SĜS, G0

S = 2uu2
c

GS*
= G0

S*
ĜS*

, G0
S*

= (3/2)u2
c

ĜS = 1
1 + c10uc + c20u2c + c30u3c + c02p2

r* + c12ucp2
r* + c04p4

r*

ĜS*
= 1

1 + c*10uc + c*20u2c + c*30u3c + c*40u4c + c*02p2
r* + c*12ucp2

r* + c*04p4
r*

• All cij/c*ij coefficients depend on 𝜈 except from c30* and c40*
(test-mass terms coming from the expansion of the exact GS* of a spinning 
particle on Schwarzschild)

leading-order test-mass 
expressions are factorized out and 

the rest is (inverse) resummed



DIFFERENT CHOICE FOR GS*: ANTI-DJS GAUGE
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Different version (obtained in “anti-Damour-Jaranowski-Schäfer” gauge):

• The factored-out G0
S* is now formally equal as the complete 

spinning-particle expression BUT all the Kerr functions (rc, A, B, Q) 
are replaced with the EOB 𝜈-dependent ones

• The residual functions are again resummed with their inverse Taylor 
representation   

(see arXiv:1911.10818v2) 

https://arxiv.org/abs/1911.10818v2


WORK IN PROGRESS… 
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Time-domain accumulated 
dephasings for q = 500 I got some 

time ago, before realising the 
spinning branch of the code was 

running without 21 contribution in 
the horizon flux

∆Q𝝎
(0)  (EOB-GSF) was different 

between spin and nonspin!
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“THE BLANKET IS SHORT”
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… but changes all the dephasings! 
The new GS* seems to improve 

only negative spins 

Will probably need to improve the 
horizon flux for spinning binaries! 
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(0) …



CONCLUSIONS AND FUTURE WORK
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• Nonspinning EOB model good for q = 50 000

• Spinning secondary: good EOB/GSF agreement in Q𝝎
(0) and Q𝝎

(1), 
but adding more spinning-particle analytical information into the 
conservative sector doesn’t help if we don’t improve the flux as well

• On a different note: could choose better integration scheme 
+ will consider some speed-up technique at some point (ML?)

• Everything EMRI evolution needs: eccentricity, precession, 
environment, resonances… most effects are easy to be incorporated 
in EOB, but we can only improve by interfacing with others!



BACKSLIDES



COMPARING Q𝝎
(1) (EOB - GSF)

A

• The difference is mostly 
negative towards the end 
of the evolution (EOB 
contribution less adiabatic 
than the GSF one)
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GSF: SPIN - NONSPIN

B

• As expected, Q𝝎
(1) depends linearly on 𝜒2 , Q𝝎

(2) doesn’t 
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EOB: SPIN - NONSPIN

C

• As expected, Q𝝎
(1) depends linearly on 𝜒2 , Q𝝎

(2) doesn’t 
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