

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Angelica Albertini

Astronomical Institute of the Czech Academy of Sciences

> 5th of July, 2023 26th Capra Meeting Copenhagen

COMPARING EFFECTIVE-ONE-BODY AND GRAVITATIONAL SELF-FORCE RESULTS FOR BLACK HOLE BINARIES WITH A SPINNING SECONDARY

In collaboration with: A. Nagar, J. Mathews, B. Wardell, A. Pound, N. Warburton

OUTLINE

- Motivation
- Quick introduction to the effective-one-body (EOB) formalism
- Building on previous results: gauge-invariant analysis
- Comparison between the EOB model TEOBResumS and gravitational self-force (GSF) results for black hole binaries with a spinning secondary
- Modifying the EOB spin-orbit sector (spinning particle info) to improve the agreement with GSF

LOOKING FORWARD

- The next generation of gravitational wave detectors (ET, CE, LISA) will allow us to detect intermediate- and extreme-mass-ratio inspirals
- Numerical relativity simulations become increasingly difficult to be performed...
- EOB models could provide fast and reliable waveforms, but they need to be tuned and benchmarked towards exact results

 → comparing to GSF allows to improve EOB
- Already improved quasi-circular nonspinning version of TEOBResumS thanks to 2GSF results (<u>arXiv:2208.02055v2</u>)

THE EFFECTIVE-ONE-BODY FORMALISM

mapping the two-body dynamics in general relativity in the motion of a particle with the reduced mass of the system moving in an effective metric that is the deformation of a Schwarzschild or Kerr black hole

Hamiltonian: found by mapping the "energy levels" of the real problem at a given post-Newtonian (PN) order to the effective ones

Mass ratio
$$\left(q = \frac{m_1}{m_2}\right)$$
, $m_1 > m_2$ Symmetric mass ratio $\nu \equiv \frac{m_1 m_2}{(m_1 + m_2)^2}$

THEORETICAL FRAMEWORK

Hamiltonian:
$$\hat{H}_{EOB} \equiv \frac{H_{EOB}}{\mu} = \frac{1}{\nu} \sqrt{1 + 2\nu \left(\hat{H}_{eff} - 1\right)}$$

$$\hat{H}_{eff} = \sqrt{p_{r_*}^2 + A \left(1 + \frac{p_{\varphi}^2}{r_c^2} + 2\nu (4 - 3\nu) \frac{p_{r_*}^4}{r_c^2}\right)} + p_{\varphi} \left(G_S \hat{S} + G_{S_*} \hat{S}_*\right)$$

orbital + spin-orbit

• Hamiltonian equations of motion complemented by the radiation reaction:

$$\frac{d\varphi}{dt} = \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{\varphi}} = \Omega$$
$$\frac{dr}{dt} = \left(\frac{A}{B}\right)^{1/2} \frac{\partial \hat{H}_{\text{EOB}}}{\partial p_{r_{*}}}$$
$$\frac{dp_{\varphi}}{dt} = \widehat{\mathscr{F}}_{\varphi} = \widehat{\mathscr{F}}_{\varphi}^{\infty} + \widehat{\mathscr{F}}_{\varphi}^{\text{H}}$$
$$\frac{dp_{r_{*}}}{dt} = -\left(\frac{A}{B}\right)^{1/2} \frac{\partial \hat{H}_{\text{EOB}}}{\partial r}$$

the phase space variables enter the evaluation of the waveform:

$$h_{+} - ih_{\times} = \frac{1}{\mathscr{D}_{L}} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \underbrace{h_{\ell m}}_{\text{multipoles}} Y_{\ell m}$$

GAUGE-INVARIANT ANALYSIS: Q

- Adiabaticity parameter: $Q_{\omega} \equiv \frac{\omega^2}{\dot{\omega}}$ $\omega \equiv \omega_{22} = \dot{\phi}_{22}$
- $Q_{\omega} >> 1$ adiabatic motion Phase difference: $\Delta \phi_{(\omega_1, \omega_2)} = \int_{\omega_1}^{\omega_2} Q_{\omega} d \log \omega$
- Expanding in the symmetric mass ratio:

$$Q_{\omega}(\omega;\nu) = \frac{Q_{\omega}^{(0)}(\omega)}{\nu} + Q_{\omega}^{(1)}(\omega) + \nu Q_{\omega}^{(2)}(\omega) + O(\nu^{2})$$

$$\bigvee_{\substack{\nu \\ \text{OPA}}} \bigvee_{\substack{\nu \\ \text{1PA}}} \bigvee_{\substack{\nu \\ \text{2PA}}} (\omega) + O(\nu^{2})$$

fitting the coefficients for a set of mass ratios at fixed values of the frequency

PREVIOUS WORK: NONSPINNING BINARIES

Some (unpublished) updates after <u>arXiv:2208.02055v2</u>

n

- Adding ℓ = 9, 10 to the infinity flux
- Shorter frequency interval:

 $\omega = [0.045, 0.12]$ f = [0.003, 0.007] (Hz)if $m_2 = 10M_{\odot}$

- Corresponding to ~1.2 years of EOB evolution, ~1.5 × 10⁵ cycles
- Integrated phase differences:

Standard: $\Delta \phi \sim 2.99$ Improved: $\Delta \phi \sim 0.74$

Q_{ω} EXPANSION WITH SPIN

- Q_{ω} can be evaluated analytically for circular orbits (in EOB)
- χ_2 is the dimensionless spin of the smaller black hole

• Memo:
$$\hat{H}_{eff} = \sqrt{p_{r_*}^2 + A\left(1 + \frac{p_{\varphi}^2}{r_c^2} + 2\nu(4 - 3\nu)\frac{p_{r_*}^4}{r_c^2}\right)} + p_{\varphi}\left(G_S\hat{S} + G_{S_*}\hat{S}_*\right)$$

orbital + spin-orbit

$$\begin{aligned} A(u;\nu) &= 1 - 2u + \nu a_1(u) \\ S &= S_1 + S_2 \quad \hat{S} \equiv \frac{S}{M^2} \quad S_* = \frac{M_2}{M_1} S_1 + \frac{M_1}{M_2} S_2 \quad \hat{S}_* \equiv \frac{S_*}{M^2} \\ G_S &= G_S^{(0)} + \nu G_S^{(1)} + \nu^2 G_S^{(2)} \quad G_{S_*} = G_{S_*}^{(0)} + \nu G_{S_*}^{(1)} + \nu^2 G_{S_*}^{(2)} \\ \tilde{G} &\equiv G_S \hat{S} + G_{S_*} \hat{S}_* \simeq \chi_2 \left(\nu G_{S_*}^{(0)} + \nu^2 \left(G_S^{(0)} + G_{S_*}^{(1)} \right) \right) + O(\nu^3) \end{aligned}$$

Q_{ω} EXPANSION WITH SPIN

- Expanding the flux up to ν^2 : $\mathscr{F} = \mathscr{F}_{1SF} + \nu \mathscr{F}_{2SF} + \nu^2 \mathscr{F}_{3SF} + \chi_2 \left(\nu \mathscr{F}_{2SF}^{spin} + \nu^2 \mathscr{F}_{3SF}^{spin} \right)$
- Putting everything into Q_{ω} yields analytical expressions for $Q_{\omega}^{(0)}$, $Q_{\omega}^{(1)}$, $Q_{\omega}^{(2)}$ that show their dependence on the flux, the 1SF term into the potential, and the secondary spin:

$$\begin{cases} Q_{\omega}^{(0)} = Q_{\omega}^{(0)} \left(\mathcal{F}_{1\text{SF}}\right) \\ Q_{\omega}^{(1)} = Q_{\omega}^{(1)} \left(a_{1}, \mathcal{F}_{1\text{SF}}, \mathcal{F}_{2\text{SF}}, \chi_{2} \cdot \mathcal{F}_{2\text{SF}}^{\text{spin}}, \chi_{2}\right) \\ Q_{\omega}^{(2)} = Q_{\omega}^{(2)} \left(a_{1}, \mathcal{F}_{1\text{SF}}, \mathcal{F}_{2\text{SF}}, \chi_{2} \cdot \mathcal{F}_{2\text{SF}}^{\text{spin}}, \mathcal{F}_{3\text{SF}}, \chi_{2} \cdot \mathcal{F}_{3\text{SF}}^{\text{spin}}, \chi_{2}, \chi_{2}^{2}\right) \end{cases}$$

$Q_{\omega}^{(0)}$

• $Q_{\omega}^{(0)}$ has no dependence on χ_2 , but there is a small (numerical) residual

- Perfect symmetry between positive and negative values of the secondary spin since $Q_{\omega}^{(1)}$ is linear in χ_2
- From the physical point of view: the fact that positive χ_2 values have a larger $Q_{\omega}^{(1)}$ means the evolution is more adiabatic...

A positive spin-orbit coupling yields a repulsive pull that delays the plunge (Nature behaving in the same way on many different scales!)

COMPARING $Q_{\omega}^{(2)}$: EOB - GSF

- Asymmetry due to nonlinear χ_2 -dependence of $Q_{\omega}^{(2)}$
- The EOB $(\chi_2)^2$ -dependence is smaller than the GSF one (less asymmetry in EOB $Q_{\omega}^{(2)}$) \implies the EOB $Q_{\omega}^{(2)}$ is more/less adiabatic than the GSF one for negative/positive spins

INSIGHT INTO THE SPIN-ORBIT SECTOR

• Current version of the gyro-gravitomagnetic functions:

$$\begin{split} G_{S} &= G_{S}^{0} \hat{G}_{S}, \\ G_{S*} &= G_{S*}^{0} \hat{G}_{S*}, \end{split} \begin{array}{c} G_{S}^{0} &= 2uu_{c}^{2} \\ G_{S}^{0} &= 2uu_{c}^{2} \\ G_{S}^{0} &= (3/2)u_{c}^{2} \\ \hline G_{S*}^{0} &= (3/2)u_{c}^{2} \\ \hline 1 &= c_{10}u_{c} + c_{20}u_{c}^{2} + c_{20}u_{c}^{3} + c_{02}p_{r^{*}}^{2} + c_{12}u_{c}p_{r^{*}}^{2} + c_{04}p_{r^{*}}^{4} \\ \hline \hat{G}_{S*} &= \frac{1}{1 + c_{10}^{*}u_{c} + c_{20}^{*}u_{c}^{2} + c_{30}^{*}u_{c}^{3} + c_{40}^{*}u_{c}^{4} + c_{02}^{*}p_{r^{*}}^{2} + c_{12}^{*}u_{c}p_{r^{*}}^{2} + c_{04}^{*}p_{r^{*}}^{4} \\ \hline \hat{G}_{S*} &= \frac{1}{1 + c_{10}^{*}u_{c} + c_{20}^{*}u_{c}^{2} + c_{30}^{*}u_{c}^{3} + c_{40}^{*}u_{c}^{4} + c_{02}^{*}p_{r^{*}}^{2} + c_{12}^{*}u_{c}p_{r^{*}}^{2} + c_{04}^{*}p_{r^{*}}^{4} \\ \hline \end{array}$$

 All c_{ij}/c*_{ij} coefficients depend on v except from c30* and c40* (test-mass terms coming from the expansion of the exact G_{s*} of a spinning particle on Schwarzschild)

DIFFERENT CHOICE FOR G_{s*}: ANTI-DJS GAUGE

Different version (obtained in "anti-Damour-Jaranowski-Schäfer" gauge):

$$G_{S_{*}}^{K} = \frac{1}{(r_{c}^{K})^{2}} \left\{ \frac{\sqrt{A^{K}}}{\sqrt{Q^{K}}} \left[1 - \frac{(r_{c}^{K})'}{\sqrt{B^{K}}} \right] + \frac{r_{c}^{K}}{\sqrt{Q^{K}}} \frac{(A^{K})'}{\sqrt{A^{K}B^{K}}} \right\}, \quad \text{(see arXiv:1911.10818v2)}$$
$$+ \frac{r_{c}^{K}}{2\left(1 + \sqrt{Q^{K}}\right)} \frac{(A^{K})'}{\sqrt{A^{K}B^{K}}} \right\}, \quad (15)$$

- The factored-out G⁰_{S*} is now formally equal as the complete spinning-particle expression BUT all the Kerr functions (r_c, A, B, Q) are replaced with the EOB v-dependent ones
- The residual functions are again resummed with their inverse Taylor representation

WORK IN PROGRESS...

χ_2	$\Delta \phi_{ m DJS}^{ m EOBGSF}$	$\Delta \phi_{ m antiDJS}^{ m EOBGSF}$
0.5	-0.1037	-0.0886
-0.5	0.0477	0.0338
0.9	-0.1434	-0.0955
-0.9	0.1137	0.0648

Time-domain accumulated dephasings for q = 500 I got some time ago, before realising the spinning branch of the code was running without 21 contribution in the horizon flux

 $\Delta Q_{\omega}^{(0)}$ (EOB-GSF) was different between spin and nonspin!

"THE BLANKET IS SHORT"

0.32179

0.19796

0.37256

0.34057

0.1499

0.42221

adding the 21 contribution into the horizon flux allows for a consistent result in $Q_{\omega}^{(0)}$...

... but changes all the dephasings! The new G_{S*} seems to improve only negative spins

Will probably need to improve the horizon flux for spinning binaries!

-0.5

-0.9

0.9

CONCLUSIONS AND FUTURE WORK

- Nonspinning EOB model good for q = 50 000
- Spinning secondary: good EOB/GSF agreement in $Q_{\omega}^{(0)}$ and $Q_{\omega}^{(1)}$, but adding more spinning-particle analytical information into the conservative sector doesn't help if we don't improve the flux as well
- On a different note: could choose better integration scheme
 + will consider some speed-up technique at some point (ML?)
- Everything EMRI evolution needs: eccentricity, precession, environment, resonances... most effects are easy to be incorporated in EOB, but we can only improve by interfacing with others!

BACKSLIDES

COMPARING $Q_{\omega}^{(1)}$ (EOB - GSF)

The difference is mostly negative towards the end of the evolution (EOB contribution less adiabatic than the GSF one)

GSF: SPIN - NONSPIN

• As expected, $Q_{\omega}^{(1)}$ depends linearly on χ_2 , $Q_{\omega}^{(2)}$ doesn't

EOB: SPIN - NONSPIN

• As expected, $Q_{\omega}^{(1)}$ depends linearly on χ_2 , $Q_{\omega}^{(2)}$ doesn't

