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Outline 

• Brief motivation benefits time symmetric solvers 

• Writing 1+1 Teukolsky equation on hyperboloidal Kerr slices

• Symmetric numerical solvers for Teukolsky equation on hyperboloidal slices  

• Testing code and results (Price tails, Aretakis Instability, Near extremal behaviour)

• Material covered in talk can be found in below paper.
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C. Markakis et al., Symmetric integration of the 1+1 Teukolsky equation on hyperboloidal foliations of Kerr 
spacetimes, Comp. Phys. Comm., accepted [arXiv:2303.08153]



Motivation – Why consider time symmetric?

• Main drawbacks of explicit Runga-Kutta numerical methods typically used as time domain 
Teukolsky solvers are Courant limit and violate Noether symmetries.

• We explore using symmetric methods which conserve certain Noether charges and are not 
Courant limited. 

• It is expected these features will be of relevance when simulating long-time EMRI’s expected to 
appear in the LISA band for 2-5 years.
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Starting Point - Teukolsky Equation (1)
• 3+1 Teukolsky equation in Boyer-Lindquist coordinates given by 

• End goal is to write this equation as a simple linear ODE which can be solved with standard 
methods
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Starting Point - Teukolsky Equation (2)
• To convert to 1+1, expand the field in spherical harmonics 

• And introduce tortoise radial coordinate 
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Starting Point - 1+1 Teukolsky Equation
• Results in 1+1 Teukolsky equation
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Barack & Giudice, Time-domain metric reconstruction for self-force applications, Phys. Rev. D 95, 104033 
(2017)



Hyperboloidal Transformation – (1)

• We scale our tortoise coordinates to make the equation dimensionless 

• Introduce radial coordinate 𝜎 defined by 

• We convert to hyperboloidal coordinates (τ, σ) using height function ℎ and compactification 
function 𝑔 as follows
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Hyperboloidal Transformation (2)  
• Compactification function 𝑔 then follows from subbing our scaling and radial coordinate 𝜎 into the 

definition of the tortoise radial coordinate. 

• We determine the minimal gauge height function by integrating outgoing null geodesics asymptotically 
and requiring that the level sets of the time coordinate become null surfaces near null infinity 
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1+1 Teukolsky equation on hyperboloidal Kerr slices
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• Performing coordinate transformation and imposing minimal gauge we obtain the
remarkable simple hyperboloidal 1+1D Teukolsky equation:

 



Matrix Form – First Order Time, Second Space
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• Introducing the auxiliary variable π can write equation in matrix form as first order in time and 
second order in space



Method of Lines (1)
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• Discretizing in space (using finite difference or pseudo-spectral grid)

• With 4-dimensional arrays given by 

• And rectangular matrix 



Method of Lines (2)
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• Rectangular matrix can be flattened to column vector and rank 4 arrays matricized



Final System of ODEs
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• We can now write the system in the form where 𝑰, 𝑨, M, N are square matrices and 𝑢
is a column vector 

• Because the matrix 𝐀 is now square and well-conditioned, we can typically compute 
an inverse for it, which now allows us to write the final system of ODEs to solve in the 
form



Solving Numerically

• We can exactly go from 𝐔(𝑡𝑛) to 𝐔(𝑡𝑛+1) using 

• If we then approximate ⅇ𝐋Δt with a one-point Taylor expansion, we recover Runga-Kutta 
methods 

ⅇ𝐋 Δt ≈ 𝐈 + 𝐋 Δt +
1

2!
(𝐋 Δt)2+. . . . +

1

𝑛!
(𝐋 Δt)𝑛

• While a two-point Taylor expansion up to the second term, equivalent to the Hermite integration 
method or a 2nd order Pade expansion, yields the time-symmetric approximant
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𝐔(𝑡𝑛+1) = ⅇ𝐋Δt𝐔(𝑡𝑛)



Can calculate Price Tails until field decays below 
machine precision 
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• Price tails are a good check 
to see that our code can 
compute accurately until 
late times.

• Tails are calculated with 
the below formula



Comparison of Runga-Kutta & Hermite Solvers
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Numerical Method 4τ
Spatial 
Grid Size

Numer Time 
Steps

Run Time 
- Seconds

Run 1 Runga-Kutta Standard 800 220 3,600,000 1758

Run 2 Runga-Kutta Matrix Form 800 220 3,600,000 883

Run 3 Hermite 800 220 3,600,000 259

Run 4 Hermite 800 220 2,000 0.15

Run 5 Hermite 8,000 770 200,000 399

• Compare Runga-Kutta and Hermite for
computing Price tail for first mode for
(m,s)=(0,2). (Run 1-4)

• Additionally tested accuracy of Hermite 
approach for long time run (Run 5). 

• Comparison each run:



Aretakis’ horizon instability (extremal a=M Kerr)

17

Sharp gradients form near the horizon. 
Non-degenerate energy of φlm generically concentrates on the horizon at φlm →∞ !



Aretakis’ horizon instability (extremal a=M Kerr)
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Ringing of near-extremal |a|→M Kerr at Scri+ 
• When Kerr parameter is near extremality decay of the field is much slower: 

• Further work is to investigate observational signature in LIGO O4 data
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N. A. Andersson & K. Glampedakis, A superradiance resonance cavity outside rapidly rotating black holes, PRL 84 4537-4540, 2000
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Summary
• We have written the 1+1D Teukolsky equation in a convenient form in hyperboloidal coordinates 

• Converted the system into the form of a linear ODE which easily solvable

• Computed Price tails, calculated Aretakis instability and near extremal behaviour.

• Next steps incorporate particle & consider second order.
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