Extended-body motion, local symmetries, and Petrov types

Abraham Harte (with David Dwyer)

Centre for Relativity & Astrophysics Dublin City University

Capra 26 University of Copenhagen July 7, 2023

Different things can fall differently

How differently?

 Decide on an interesting system, model its internal structure, and solve the resulting equations of motion.

- Decide on an interesting system, model its internal structure, and solve the resulting equations of motion.
- 2 Figure out what is *impossible*, regardless of model.

What is allowed by the laws of physics and what is not?

Rocket-free spacecraft

- Can an appropriate spacecraft maneuver without a rocket?
 Are some foress or terrors impressible?
- Are some forces or torques impossible?

That which is not forbidden is allowed...

... and things are forbidden mainly by symmetries.

Some possibilities are forbidden by Killing fields.

$$\xi^{a}F_{a} + \frac{1}{2}\nabla_{a}\xi_{b}N^{ab} = 0.$$

Some possibilities are forbidden by Killing fields.

$$\xi^{a}F_{a}+\frac{1}{2}\nabla_{a}\xi_{b}N^{ab}=0.$$

Are these the only constraints?

δF

Some possibilities are forbidden by Killing fields.

$$\xi^{a}F_{a} + \frac{1}{2}\nabla_{a}\xi_{b}N^{ab} = 0.$$

Are these the only constraints?

No! Enlarge your notion of symmetry.

There are always 10 generalized Killing fields (GKFs) satisfying

$$\mathcal{L}_{\xi}g_{ab}(z_s) = \nabla_c \mathcal{L}_{\xi}g_{ab}(z_s) = 0.$$

Force and torque constraints need only a 1-parameter family of GKFs ξ_s^a s.t.

$$\nabla_c \nabla_d \mathcal{L}_{\xi_s} g_{ab}(z_s) = 0 \quad \Leftrightarrow \quad \mathcal{L}_{\xi_s} R_{abcd}(z_s) = 0.$$

Symmetry only necessary at the object's location. Different vector fields can be used at different times!

There's a local symmetry for every...

- ... Killing field.
- ② ... conformal Killing-Yano tensor $f_{ab} = f_{[ab]}$. These generate approximate Lorentz transformations.

There's a local symmetry for every...

- ... Killing field.
- ② ... conformal Killing-Yano tensor $f_{ab} = f_{[ab]}$. These generate approximate Lorentz transformations.

But there's much more than this. Local symmetries are common!

For every local symmetry,

$$\xi_s^a F_a + \frac{1}{2} \nabla^a \xi_s^b N_{ab} = 0.$$

For every local symmetry,

$$\xi_s^a F_a + \frac{1}{2} \nabla^a \xi_s^b N_{ab} = 0.$$

- Some torques are impossible.
- Some forces are possible only with "compensating" torques.
- Some internal structure can't affect motion.

Some forces possible only at the cost of torques

$$F_{a} = \underbrace{(\ldots)_{a}^{bc}}_{\text{No control}} N_{bc} + \operatorname{Re} \underbrace{\sum_{I} J_{I} \nabla_{a} \Psi_{I}}_{\text{Controllable}}$$

How much can the force be controlled independently of torque?

In GR, up to 10 quadrupole components (5 mass + 5 current) can affect motion [but more in other theories of gravity!]

How many quadrupole *actually* matter?

Local symmetries etc. largely determined by Petrov type.

Petrov type	Quad. comps.	$\dim\{N_{ab}\}$	$\dim\{F_a N_{bc}\}$
N ($\uparrow \uparrow \uparrow \uparrow$)	4	4	0

Local symmetries etc. largely determined by Petrov type.

Petrov type	Quad. comps.	$\dim\{N_{ab}\}$	$\dim\{F_a N_{bc}\}$
N ($\uparrow \uparrow \uparrow \uparrow$)	4	4	0
D (↑ ↑, ↑ ↑)	4–6	4	≤ 2

Local symmetries etc. largely determined by Petrov type.

Petrov type	Quad. comps.	$\dim\{N_{ab}\}$	$\dim\{F_a N_{bc}\}$
N ($\uparrow \uparrow \uparrow \uparrow$)	4	4	0
D (↑ ↑, ↑ ↑)	4–6	4	≤ 2
I (↑, ↑, ↑, ↑)	6 —10	6	<u>≤ 4</u>

- Extended-body forces and torques are arbitrary, except where forbidden by symmetries.
- Constraints need only a very weak local notion of symmetry. Killing fields and conformal Killing-Yano tensors are special cases.

- Extended-body forces and torques are arbitrary, except where forbidden by symmetries.
- Constraints need only a very weak local notion of symmetry. Killing fields and conformal Killing-Yano tensors are special cases.
- **③** Consequences of symmetry:
 - Fewer quadrupole components can affect motion.
 - Some forces arise only with torques.
 - **③** Some torques are impossible.