# Can we predict Self-Force from Numerical Relativity?



#### Leanne Durkan

Collaborators: Aaron Zimmerman, Sergi Navarro Albalat, Lorenzo Küchler, Geoffrey Compère, Adam Pound, Niels Warburton, Barry Wardell



The University of Texas at Austin Center for Gravitational Physics

# Motivation

How well does BHPT describe IMRIs or comparable mass systems? Can we predict higher order self-force terms from numerical relativity simulations?



Wardell et al. 2021

PRL 130, 241402

# Adiabaticity Parameter



Expect frequency to be increasingly monotonically for quasicircular orbits,  $\Omega = \Omega_{\phi} \propto \omega_{\rm GW}$ 

# Transition to plunge



$$\begin{split} \nu Q_{\rm SF}^{\rm insp} &= Q_0^{\rm insp} + \nu Q_1^{\rm insp} + \mathcal{O}(\nu^2) \quad \rightarrow \quad \sigma^3 Q_{\rm SF}^{\rm trans} = Q_0^{\rm trans} + \sigma^2 Q_2^{\rm trans} + \mathcal{O}(\sigma^3) \\ &\varepsilon t \to t\lambda, \quad \lambda = \varepsilon^{1/5}, \quad \sigma = \nu^{1/5} \end{split}$$



 $\sigma^3 Q_{\rm SF}^{\rm trans} = Q_0^{\rm trans} + \sigma^2 Q_2^{\rm trans} + \mathcal{O}(\sigma^3)$ 

## Cleaning NR data during the transition to plunge



Savitzky-Golay ('Savgol') filter Some simulations also require fitting to a polynomial in powers of  $\Delta\Omega$ .



 $\sigma^3 Q_{\rm SF}^{\rm trans} = Q_0^{\rm trans} + \sigma^2 Q_2^{\rm trans} + \mathcal{O}(\sigma^3)$ 

### Fitting NR data during the transition to plunge



$$\sigma^3 Q^{\text{trans}} = Q_0^{\text{trans}} + \sigma^2 Q_2^{\text{trans}} + \sigma^3 Q_3^{\text{trans}} + \mathcal{O}(\sigma^4),$$

### Fitting NR data during the transition to plunge...??



$$\sigma^3 Q^{\text{trans}} = Q_0^{\text{trans}} + \sigma^2 Q_2^{\text{trans}} + \sigma^3 Q_3^{\text{trans}} + \mathcal{O}(\sigma^4),$$

# Extracting SF information from NR during the transition to plunge



# Extracting SF information from NR during the transition to plunge

(...or not??)



# Can we predict Self-Force from Numerical Relativity?

Conclusions:

- In the inspiral: yes!
- During the transition: No?
- Degeneracy of powers of  $\nu^{1/5}$  for comparable mass ratios.
- Is this evidence that BHPT cannot describe comparable mass systems during the transition to plunge?

ToDo:

- Stabilise fit: Can this be done?
- Use  $\Phi$  instead of Q to reduce numerical noise.

# Bonus Slide

Frequency evolution during inspiral via the SF approach

$$Q = \frac{\Omega^2}{\dot{\Omega}}, \qquad \frac{d\Omega}{dt} = \nu F_0^{\Omega} + \nu^2 F_1^{\Omega} + \mathcal{O}(\nu^3), \qquad \nu = \frac{\varepsilon}{(1+\varepsilon)^2},$$

$$F_0^{\Omega} = -\left(\partial_{\Omega} E_0^{\text{bind}}\right)^{-1} \mathcal{F}_{\nu}^1,$$
  
$$F_1^{\Omega} = -\left(\partial_{\Omega} E_0^{\text{bind}}\right)^{-1} \mathcal{F}_{\nu}^2 + \left(\partial_{\Omega} E_0^{\text{bind}}\right)^{-2} \mathcal{F}_{\nu}^1 \partial_{\Omega} E_1^{\text{bind}},$$

$$E_0^{\text{bind}} = E_0^{\text{geo}},$$
$$E_1^{\text{bind}} = E_1^{\text{SF}}.$$