

ETERNAL BINARIES

PRD 107 (2023)12 arXiv:2304.02039

26th Capra meeting @ Copenhagen

JAIME REDONDO-YUSTE

In collaboration with

V. Cardoso

C. Macedo

M. van de Meent

Dynamics governed by the conservative self-force

- Dynamics governed by the conservative self-force
- No dissipation: are the orbits eternal?

- Dynamics governed by the conservative self-force
- No dissipation: are the orbits eternal?
- Normal mode frequencies are real: what happens when $\omega_{\ell mn}=m\Omega$?

- Dynamics governed by the conservative self-force
- No dissipation: are the orbits eternal?
- Normal mode frequencies are real: what happens when $\omega_{\ell mn}=m\Omega$?
- Initial data does not leave the system

Outer Boundary

- AdS
- Fuzzy Dark Matter

EMRI
$$lacktriangledown m \ll M$$

Charge
$$q/m \ll 1$$

Orbit
$$r_{
m orb} \in [r_{
m ISCO}, r_2]$$

Cavity
$$\qquad \qquad R=r_2-r_1$$

Dissipative scalar self-force vanishes*

* Depends on the initial conditions!

Dissipative scalar self-force vanishes*

* Depends on the initial conditions!

ISCO frequency shifts

* Depends on the initial conditions!

Dissipative scalar self-force vanishes*

* Depends on the initial conditions!

ISCO frequency shifts

The system has resonances

(Only if the cavity is large enough)

$$\mathcal{L}_{\omega}\phi=S_{\omega}^{ ext{eff}}+\mathcal{I}_{\omega}$$

$$\mathcal{L}_{\omega}\phi=S_{\omega}^{ ext{eff}}+\mathcal{I}_{\omega}$$

$$\Phi = \sum_k \Bigl(A_k e^{i\omega_k t} + B_k e^{i\Omega t} \Bigr) \phi_k$$

$$\mathcal{L}_{\omega}\phi=S_{\omega}^{ ext{eff}}+\mathcal{I}_{\omega}$$

$$\Phi = \sum_k \left(A_k e^{i \omega_k t} + B_k e^{i \Omega t} \right) \phi_k$$

$$\mathcal{L}_{\omega}\phi=S_{\omega}^{ ext{eff}}+\mathcal{I}_{\omega}$$

$$\Phi = \sum_k \Bigl(A_k e^{i\omega_k t} + B_k e^{i\Omega t} \Bigr) \phi_k$$

$$\langle f_{\mu}^{
m Diss}
angle \propto A_k$$

$$A_k = \phi_k^{ ext{I}} + rac{\pi_k^{ ext{I}}}{i\omega_k} + rac{S_k}{i(\omega_k - \Omega)}$$

$$\mathcal{L}_{\omega}\phi=S_{\omega}^{ ext{eff}}+\mathcal{I}_{\omega}$$

$$\Phi = \sum_{k} \Big(A_k e^{i\omega_k t} + B_k e^{i\Omega t} \Big) \phi_k$$

$$\langle f_{\mu}^{
m Diss}
angle \propto A_k$$

$$A_k = \phi_k^{ ext{I}} + rac{\pi_k^{ ext{I}}}{i\omega_k} + rac{S_k}{i(\omega_k - \Omega)}$$

$$H = H_{ ext{Cavity}}(\pi,\phi) + H_{ ext{Osc}}(p,q)
onumber \ -rac{arepsilon}{L} \cos\Bigl(rac{q}{L}\Bigr) \int_0^L dx rac{\phi(x)S(x)}{L}
onumber \ .$$

$$H=H_{
m Cavity}(\pi,\phi)+H_{
m Osc}(p,q)$$
 $-rac{arepsilon}{L}\cos\Bigl(rac{q}{L}\Bigr)\int_0^L dxrac{\phi(x)S(x)}{L}$ Near Identity Transformation

$$H = H_{ ext{Cavity}}(\pi,\phi) + H_{ ext{Osc}}(p,q)
onumber \ -rac{arepsilon}{L} \cos\Bigl(rac{q}{L}\Bigr) \int_0^L dx rac{\phi(x)S(x)}{L}$$

Near Identity Transformation

$$p \stackrel{t o \infty}{\longrightarrow} p_0 + rac{arepsilon}{\omega - p_0} F^{(1)}(\phi_0, \omega) + arepsilon^2 F^{(2)}(\phi_0, \omega)$$

$$H = H_{ ext{Cavity}}(\pi,\phi) + H_{ ext{Osc}}(p,q)
onumber \ -rac{arepsilon}{L} \cos\Bigl(rac{q}{L}\Bigr) \int_0^L dx rac{\phi(x)S(x)}{L}$$

Near Identity Transformation

$$p \stackrel{t o \infty}{\longrightarrow} p_0 + rac{arepsilon}{\omega - p_0} F^{(1)}(\phi_0, \omega) + arepsilon^2 F^{(2)}(\phi_0, \omega)$$

There exists ICs such that the drift vanishes up to second order!

$$egin{aligned} p & \stackrel{t o \infty}{\longrightarrow} p_0 + rac{arepsilon}{\omega - p_0} F^{(1)}(\phi_0, \omega) + arepsilon^2 F^{(2)}(\phi_0, \omega) \ & \epsilon_\star \,, \quad ext{s. t.} \quad p - p_0 \sim \left| \omega_{n+1} - \omega_n
ight| \end{aligned}$$

I. Eternal Orbit

II. Chaos

III. Merger

I. Eternal Orbit

Fast dynamics + secular drift

- I. Eternal Orbit
- + fine-tuned initial conditions

Fast dynamics No secular piece

II. Chaos

Only if the cavity is large enough

Needs large q/m

- or -

Starting close to a resonant orbit

III. Merger

III. Merger

If initially in vacuum

$$rac{q}{m} \lesssim \sqrt{rac{M}{m}} igg(rac{R}{M}igg)^{rac{1}{10}} igg(rac{M}{r_{
m orb}-r_{
m ISCO}}igg)^{rac{3}{4}}$$

TAKE-AWAYS

- Closed systems are useful to illustrate conservative effects
- There is astrophysical & theoretical motivation
- Secular effects appear depending on the initial conditions
- Resonances can drastically impact the dynamics: chaos(?)
- Problem of scales: large cavities have richer possibilities