## Exact solution for motion of spinning particles near static, spherically symmetric objects

Vojtěch Witzany
Charles U., Prague vojtech.witzany@matfyz.cuni.cz In collaboration with Gabriel A. Piovano Capra 26, 7 July 2023


## Why care about "spinning particle"?

- In compact object binaries, spin-orbital coupling appears as a conservative effect at linear order in mass ratio (assuming Kerr bound for black holes, mass-shedding limits for neutron stars)
- Also 1.5PN in a post-Newtonian expansion, 0.5PN earlier than non-trivial gravitational self-force (not obtainable from $m \rightarrow \mu$ rescaling and Schwarzschild geodesics)
- That places it confidently into the 1PA iteration of large-mass ratio waveforms.
- Need to solve for motion perturbed by spin (linear order)
- Need to solve for correction to fluxes



## Context

- 2018 (VW, Steinhoff, Lukes-Gerakopoulos 1808.06582): Hamiltonians and canonical coordinates for spinning particles
- 2019 (VW, 1903.03651): Hamilton-Jacobi equation, separability in Kerr, constants of motion $\mathcal{E}_{s o}, \mathcal{L}_{s o}, \mathcal{K}_{s o}, s_{\|}$, solution depends on adapted Marck tetrad and its connection

$$
\begin{aligned}
& \frac{\mathrm{d} r}{\mathrm{~d} \lambda}= \pm \Delta \sqrt{w_{r}^{\prime 2}-e_{0 r} e_{C ; r}^{\kappa} e_{\kappa B} \tilde{s}^{C D}} \\
& \frac{\mathrm{~d} \vartheta}{\mathrm{~d} \lambda}= \pm \sqrt{w_{\vartheta}^{\prime}{ }^{2}-e_{0 \vartheta} e_{C ; \vartheta}^{\kappa} e_{\kappa B} \tilde{s}^{C D}}
\end{aligned}
$$

Sanity checks in equatorial plane, independent methods in special limits (Schwarzschild), contact with
Drummond \& Hughes (2201.13334, 2201.13335), Skoupý \& Lukes-Gerakopoulos (2102.04819) Saijo+ (1998),...


Metric (why not general -> bosons stars and whatnot):

$$
\mathrm{d} s^{2}=-f(r) \mathrm{d} t^{2}+h(r) \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin \theta^{2} \mathrm{~d} \phi^{2}\right)
$$

Killing constants of motion for spinning particle:

$$
P^{\mu} \xi_{\mu}-\xi_{\rho ; \sigma} S^{\rho \sigma} / 2
$$

Static, spherically symmetric ( $x, y, z$ axis rotations):

$$
\mathcal{E}=-f \dot{t}+\frac{r^{2} \sin \theta f^{\prime} s^{\phi} \dot{\theta}-s^{\theta} \dot{\phi}}{2 \sqrt{f h}},
$$

$$
\mathcal{J}_{x}=-r^{2}(\sin \phi \dot{\theta}+\cos \phi \cos \theta \sin \theta \dot{\phi})
$$

$$
+\sqrt{\frac{f}{h}}\left[\sin \theta \cos \phi h\left(s^{t} \dot{r}-s^{r} \dot{t}\right)+r \sin \phi \sin \theta\left(s^{\phi} \dot{t}-s^{t} \dot{\phi}\right)+r \cos \phi \cos \theta\left(s^{t} \dot{\theta}-s^{\theta} \dot{t}\right)\right]
$$

$$
\mathcal{J}_{y}=r^{2}(\cos \phi \dot{\theta}-\sin \phi \cos \theta \sin \theta \dot{\phi})+
$$

$$
\sqrt{\frac{f}{h}}\left[\sin \theta \sin \phi h\left(s^{t} \dot{r}-s^{r} \dot{t}\right)+r \cos \phi \sin \theta\left(s^{t} \dot{\phi}-s^{\phi} \dot{t}\right)+r \sin \phi \cos \theta\left(s^{t} \dot{\theta}-s^{\theta} \dot{t}\right)\right]
$$

$$
\mathcal{J}_{z}=r^{2} \sin ^{2} \theta \dot{\phi}
$$

$$
+\sqrt{\frac{f}{h}}\left[\cos \theta h\left(s^{t} \dot{r}-s^{r} \dot{t}\right)+r \sin \theta\left(s^{\theta} \dot{t}-s^{t} \dot{\theta}\right)\right]
$$

## Aligned frame $\overrightarrow{z^{\prime}}|\mid \overrightarrow{\mathfrak{J}}$ : decoupling!!

$$
\begin{gathered}
\delta \vartheta=\frac{\sqrt{f h}\left(s^{r} \dot{t}-s^{t} \dot{r}\right)}{r^{2} \dot{\varphi}}+\mathcal{O}\left(s^{2}\right) . \\
\dot{r}^{2}=\frac{1}{h}\left(-1+\frac{\mathcal{E}^{2}}{f}-\frac{\mathcal{J}^{2}}{r^{2}}\right)-\frac{s_{\|} \mathcal{E} \mathcal{J}\left(2 f-r f^{\prime}\right)}{(f h)^{3 / 2} r^{2}}, \\
\dot{t}=\frac{\mathcal{E}}{f}-\frac{s_{\|} \mathcal{J} f^{\prime}}{2 f r \sqrt{f h}}, \\
\dot{\varphi}=\frac{\mathcal{J}}{r^{2}}-\frac{s_{\|} \mathcal{E}}{r^{2} \sqrt{f h}} . \\
s_{\|} \equiv \frac{l^{\mu} s_{\mu}}{\sqrt{l^{\nu} l_{\nu}}}, \frac{\mathrm{d} s_{\|}}{\mathrm{d} \tau}=0+\mathcal{O}\left(s^{2}\right) .
\end{gathered}
$$

## Spin sector? Parallel transport

Generalization of the tetrad of Marck (1983) for Kerr geodesics to any static, spherically

$$
\begin{aligned}
& \text { symmetric space-time: } \\
& \qquad \begin{array}{l}
e_{(0)}^{\mu}=\left(\mathcal{E} / f, \dot{r}, \mathcal{J} / r^{2}, 0\right), \quad \tilde{e}_{(1)}^{\mu}=\left(\frac{\dot{r} r \sqrt{h}}{\sqrt{f\left(\mathcal{J}^{2}+r^{2}\right)}}, \frac{\mathcal{E} r}{\sqrt{f h\left(\mathcal{J}^{2}+r^{2}\right)}}, 0,0\right) \\
e_{(3)}^{\mu}=\left(0,0,0, \frac{1}{r}\right), \quad \tilde{e}_{(2)}^{\mu}=\left(\frac{\mathcal{E} \mathcal{J}}{f \sqrt{\mathcal{J}^{2}+r^{2}}}, \frac{\mathcal{J} \dot{r}}{r}, \frac{\sqrt{\mathcal{J}^{2}+r^{2}}}{r^{2}}, 0\right) \\
\dot{\psi}=\frac{\mathcal{E} \mathcal{J}}{\mathcal{J}^{2}+r^{2}}
\end{array}
\end{aligned}
$$

$$
s^{r}=\sqrt{s^{2}-s_{\|}^{2}}\left(\frac{\mathcal{J} \dot{r} \cos \psi}{r}+\frac{\mathcal{E} r \sin \psi}{\sqrt{f h\left(\mathcal{J}^{2}+r^{2}\right)}}\right) s^{\vartheta}=\frac{s_{\|}}{r}
$$

## Taster: radial motion in Schwarzschild

$\because$

$$
\begin{aligned}
\lambda(r)-\lambda\left(r_{2}\right) & =\int_{r_{2}}^{r} \frac{\mathrm{~d} r^{\prime}}{\sqrt{R(r)}} \\
& =\frac{2 F(\chi, k)}{\sqrt{\left(1-\mathcal{E}^{2}\right)\left(r_{1}-r_{3}\right) r_{2}}},
\end{aligned}
$$

$$
\begin{aligned}
& R(r) \equiv\left(1-\mathcal{E}^{2}\right)\left(r_{1}-r\right)\left(r-r_{2}\right)\left(r-r_{3}\right) r, \\
& r_{1,2}=\frac{p}{1 \mp e} \\
& r_{3}=\frac{2 M p}{p-4 M}-\frac{2 s_{\|} \sqrt{M p\left[p^{2}-4 M p+4 M^{2}\left(1-e^{2}\right)\right]}}{(p-4 M)^{2}}
\end{aligned}
$$

$$
\sin \chi \equiv \sqrt{\frac{\left(r_{1}-r_{3}\right)\left(r-r_{2}\right)}{\left(r_{1}-r_{2}\right)\left(r-r_{3}\right)}},
$$

$$
k^{2}=\frac{\left(r_{1}-r_{2}\right) r_{3}}{\left(r_{1}-r_{3}\right) r_{2}}
$$

$$
\mathcal{E}^{2}=\frac{(p-2 M)^{2}-4 M^{2} e^{2}}{p\left[p-M\left(3+e^{2}\right)\right]}
$$

ISCO position in closed form:
$-s_{\|} \frac{\left(e^{2}-1\right)^{2} M \sqrt{M p\left[p^{2}-4 M p-4 M^{2}\left(e^{2}-1\right)\right]}}{p^{2}\left[p-M\left(3+e^{2}\right)\right]^{2}}$

$$
p_{\mathrm{c}}=(6+2 e) M-2 s_{\|} \sqrt{\frac{2(1+e)}{3+e}}
$$

## Inverting and t-motion (cf. van de Meent, 1906.05090)

$$
\begin{gathered}
r(\lambda)=\frac{r_{3}\left(r_{1}-r_{2}\right) \operatorname{sn}^{2}\left(\frac{K(k)}{\pi} q^{r}, k\right)+r_{2}\left(r_{1}-r_{3}\right)}{\left(r_{1}-r_{2}\right) \operatorname{sn}^{2}\left(\frac{K(k)}{\pi} q^{r}, k\right)-\left(r_{1}-r_{3}\right)}, \\
q^{r} \equiv \Upsilon^{r} \lambda+q_{0}^{r}, \\
\Upsilon^{r} \equiv \frac{\pi \sqrt{\left(1-\mathcal{E}^{2}\right)\left(r_{1}-r_{3}\right) r_{2}}}{2 K(k)}, \\
t(\lambda)=q^{t}+\tilde{T}_{r}\left(\operatorname{am}\left(\frac{q^{r}}{\pi} K(k), k\right)\right)-\frac{\tilde{T}_{r}(\pi)}{2 \pi} q^{r}, q^{t} \equiv \Upsilon^{t} \lambda+q_{0}^{t}, \Upsilon^{t}=\frac{\tilde{T}_{r}(\pi)}{\Upsilon^{r}} \\
\tilde{T}_{r}(\chi)=\frac{\mathcal{E}}{\sqrt{\left(1-\mathcal{E}^{2}\right) r_{2}\left(r_{1}-r_{3}\right)}}\left[-\frac{2 M\left(r_{1}-r_{3}\right)\left(r_{3}-r_{2}\right)-r_{3}\left(r_{1}\left(r_{3}-r_{2}\right)+r_{3}\left(r_{2}+r_{3}\right)\right)+2 M s_{\|} \mathcal{J} / \mathcal{E}}{r_{3}-2 M} F(\chi, k)\right. \\
+\left(4 M+r_{1}+r_{2}+r_{3}\right)\left(r_{2}-r_{3}\right) \Pi\left(\chi, \frac{r_{1}-r_{2}}{r_{1}-r_{3}}, k\right)+r_{2}\left(r_{1}-r_{3}\right) E(\chi, k) \\
\left.-\frac{\left(8 M^{2}-\mathcal{J}_{\| \|} / \mathcal{E}\right) 2 M\left(r_{2}-r_{3}\right)}{\left(r_{3}-2 M\right)\left(r_{2}-2 M\right)} \Pi\left(\chi, \frac{\left(r_{3}-2 M\right)\left(r_{1}-r_{2}\right)}{\left(r_{2}-2 M\right)\left(r_{1}-r_{3}\right)}, k\right)-\frac{\sqrt{r r_{2}\left(r_{1}-r_{3}\right)\left(r_{1}-r\right)\left(r-r_{2}\right)}}{\sqrt{r-r_{3}}}\right],
\end{gathered}
$$

## . Conclusions

- Spinning particle motion in spherically symmetric, static space-times fully solved by quadrature
- ISCO, energy, angular momentum shifts, turning points, all depend only on $s_{\|}$
- $s_{\|}=0$ means geodesic with precessing plane!
- For Schwarzschild full closed-form solution in terms of angle variables $q^{r}, q^{t}, q^{\phi}, q^{\psi}$
- Lookout on arxiv for Witzany \& Piovano 2307.XXXXX


