A discontinuous Galerkin method for the distributionally-sourced s=0 Teukolsky equation

$Manas~Vishal~{\rm (vishalmanas28@gmail.com)}$

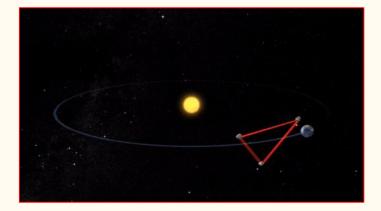
Distinguished Doctoral Fellow University of Massachusetts Dartmouth

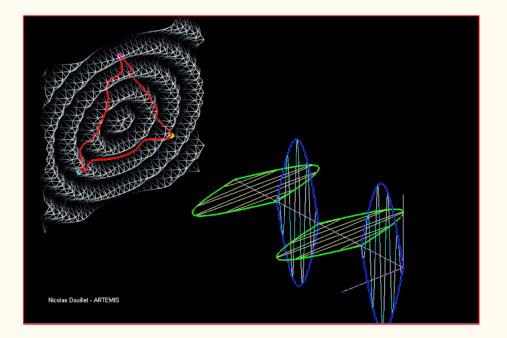
Scott Field², Katie Rink², Sigal Gottlieb² and Gaurav Khanna¹

¹University of Rhode Island ²University of Massachusetts Dartmouth

26th Capra Meeting on Radiation Reaction in General Relativity Niels Bohr Institute, Copenhagen, Denmark July 05, 2023

Hey LISA¹!





3D Animation from one of our in-house code

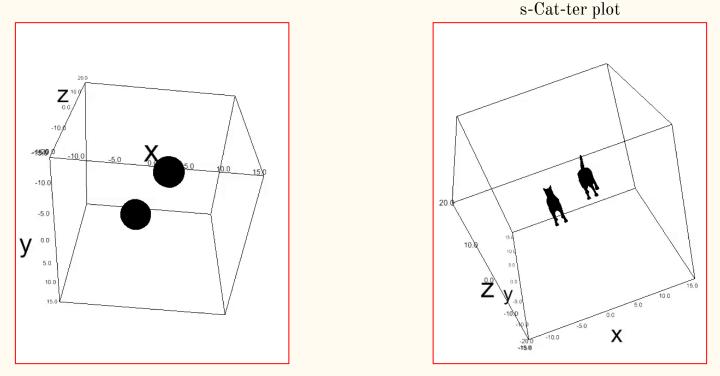
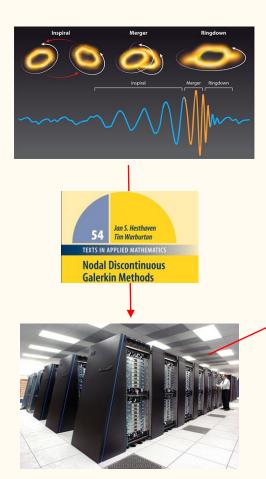


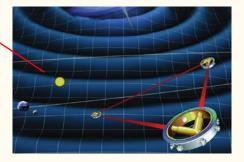
Figure credits : MV+ friends for ICERM Numerical Relativity hackathon at Brown University

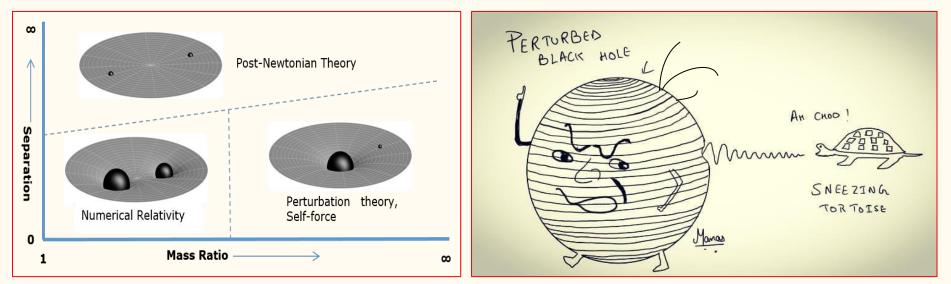
Note: The tails of the cats represent the spin on the black holes :)



Matched Filtering 101

 $Figure\ credits: MV\ for\ fb.com/GrandUnifiedPhysicsMemes$





TimothyRias from Wikipedia

Inspired by C. V. Vishveshwara's original to accommodate "tortoise coordinates"

 $\mathbf{5}$

Teukolsky equation :

$$-\left[\frac{\left(r^{2}+a^{2}\right)^{2}}{\Delta}-a^{2}\sin^{2}\theta\right]\partial_{tt}\Psi-\frac{4Mar}{\Delta}\partial_{t\phi}\Psi-2s\left[r-\frac{M\left(r^{2}-a^{2}\right)}{\Delta}+ia\cos\theta\right]\partial_{t}\Psi-\left(s^{2}\cot^{2}\theta-s\right)\Psi\right.\\\left.+\Delta^{-s}\partial_{r}\left(\Delta^{s+1}\partial_{r}\Psi\right)+\frac{1}{\sin\theta}\partial_{\theta}\left(\sin\theta\partial_{\theta}\Psi\right)+\left[\frac{1}{\sin^{2}\theta}-\frac{a^{2}}{\Delta}\right]\partial_{\phi\phi}\Psi+2s\left[\frac{a(r-M)}{\Delta}+\frac{i\cos\theta}{\sin^{2}\theta}\right]\partial_{\phi}\Psi=-4\pi\left(r^{2}+a^{2}\cos^{2}\theta\right)T$$
where,

$$\Delta = r^{2} + a^{2} - 2Mr \qquad T = G(t) \cdot \delta \left(r - r_{p}\right) \cdot \delta \left(\theta - \theta_{p}\right) \cdot \delta \left(\phi - \phi_{p}\right)$$

Motivation

- Time domain solvers are generic and flexible, drawbacks include
 - Delta functions are approximated by narrow Gaussians
- All time domain solvers are 2+1D
- Our approach :
 - \circ 1+1D decomposition^{1,2}
 - Delta function can be modelled exactly with dG scheme

Ansatz:

$$\Psi(t, r, \theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \psi_{\ell,m}(t, r) Y_{\ell,m}(\theta, \phi)$$

Master equation in tortoise coordinates for scalar field:

$$-\ddot{\psi}_{\ell} + \psi_{\ell}'' + \frac{\Delta}{\left(r^2 + a^2\right)^2} \left[\frac{3r^2\Delta}{\left(r^2 + a^2\right)^2} - \ell(\ell+1) - \frac{r(2r-2M)}{\left(r^2 + a^2\right)} - \frac{\Delta}{\left(a^2 + r^2\right)} \right] \psi_{\ell} = G(t)\delta(r) - \frac{\Delta a^2}{\left(r^2 + a^2\right)^2} \sum_{L=0}^{\infty} C_{L\ell}\ddot{\psi}_{L}$$

^[1] Nunez, Dario, Juan Carlos Degollado, and Carlos Palenzuela. "One dimensional description of the gravitational perturbation in a Kerr background." Physical Review D 81, no. 6 (2010): 064011. [2] Stein, L. C. (2012). Probes of strong-field gravity (Doctoral dissertation, Massachusetts Institute of Technology).

The full coupled system by introducing auxiliary variables:

$$\pi_l = -\dot{\Psi}_l ; \quad \phi_l = \Psi'_l$$

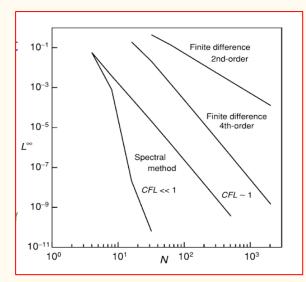
For example, with given $l_{max}=6$

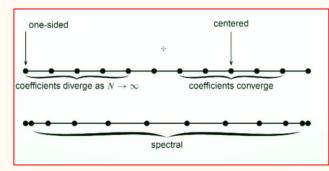
$$\begin{bmatrix} (1-fC_{00}) & -fC_{02} & 0 & 0 & 0 & 0 & 0 \\ -fC_{20} & (1-fC_{22}) & -fC_{24} & 0 & 0 & 0 & 0 \\ 0 & -fC_{42} & (1-fC_{44}) & -fC_{46} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\pi}_{0} \\ \dot{\pi}_{2} \\ \dot{\pi}_{4} \\ \dot{\phi}_{0} \\ \dot{\phi}_{2} \\ \dot{\phi}_{4} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \pi'_{0} \\ \pi'_{2} \\ \pi'_{4} \\ \phi'_{0} \\ \phi'_{2} \\ \phi'_{4} \end{bmatrix} + \begin{bmatrix} V_{0}\psi_{0} \\ V_{2}\psi_{2} \\ V_{4}\psi_{4} \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0$$

7

Why discontinuous Galerkin?

- More efficient than finite difference methods
- Easily parallelizable
- Delta function can be exactly incorporated in the scheme
- Exponential decay of error
- Method maintains spectral accuracy for non smooth solution provided the non smoothness is located at interfaces





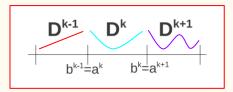
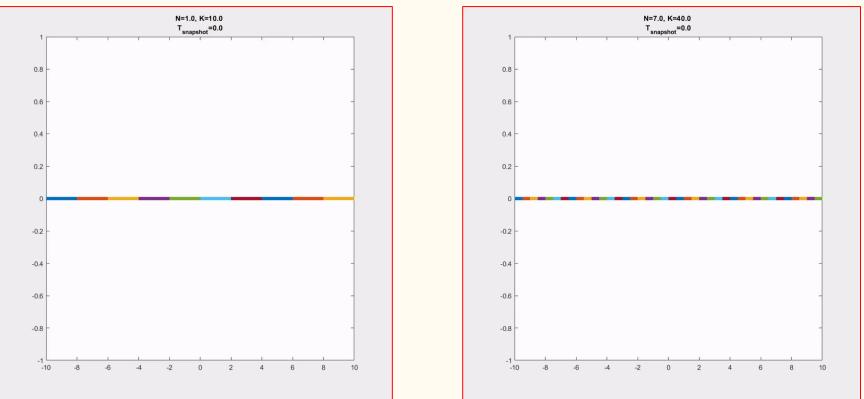


Fig. Credits: Saul Teukolsky

Delta source term in a wave equation

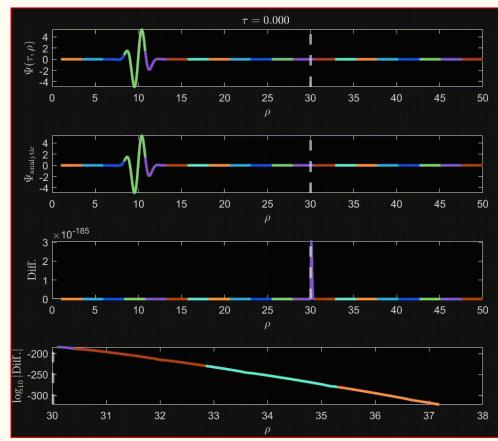
$$-\frac{\partial^2 \psi}{\partial r^2} + \frac{\partial^2 \psi}{\partial t^2} = G\left(t\right) \cdot \delta\left(r - 0\right)$$



$$-\frac{\partial^2 \Psi}{\partial t^2} + \frac{\partial^2 \Psi}{\partial r^2} + \frac{\ell(\ell+1)}{r^2}\Psi = 0$$

Hyperboloidal Layers¹

- Null infinity
- Reduces simulation time
- No boundary conditions needed
- $(r,t) \longrightarrow (\rho,\tau)$ $\tau = t - h(r)$ $r = \frac{\rho}{\Omega}$ $\Omega = 1 - \left(\frac{\rho - R}{s - R}\right)^4 \Theta(\rho - R)$ $h(r) = \frac{\rho}{\Omega} - \rho$



[1]Zenginoğlu, A. (2011). Hyperboloidal layers for hyperbolic equations on unbounded domains. Journal of Computational Physics, 230(6), 2286-2302.

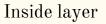
Error and Superconvergence

For sufficiently smooth solutions the error should decay like :

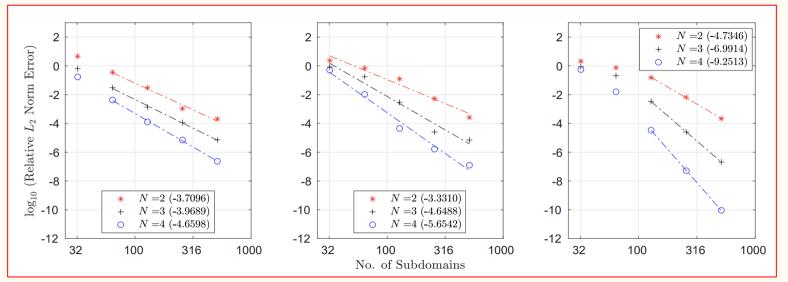
$$\left|\Psi-\Psi_{h}^{k}\right\|_{\mathbf{D}^{k}}\leq C(t)\left(\left|\mathbf{D}^{k}\right|\right)^{N+1}$$

$$-\frac{\partial^2 \psi}{\partial r^2} + \frac{\partial^2 \psi}{\partial t^2} + \frac{\ell(\ell+1)}{r^2} = 0; \qquad \ell = 2$$

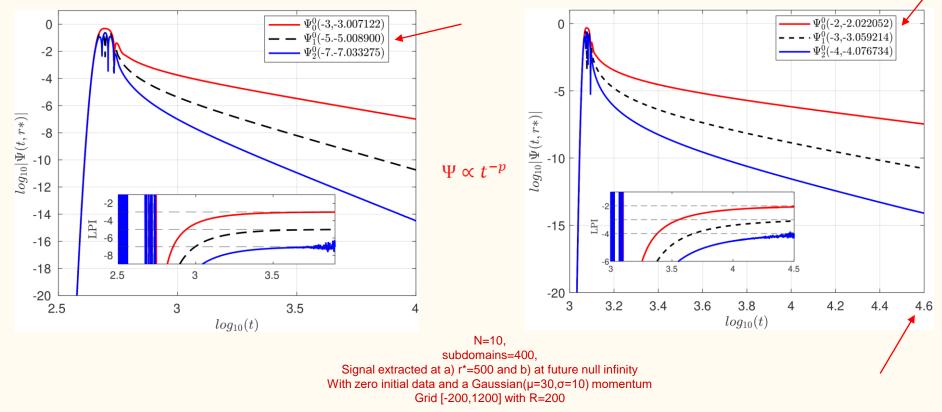
Left of layer



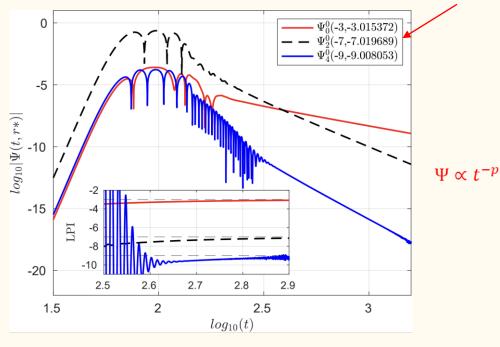
At future null infinity

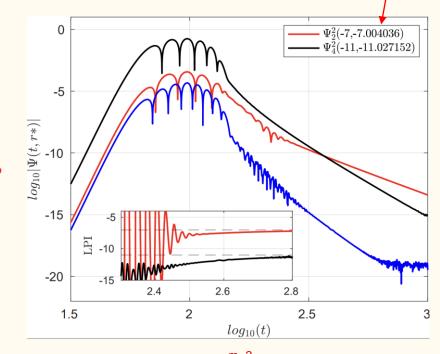


The tale of tails : Schwarzschild Price Tail



The tale of tails : Kerr Price Tail





m=0 N=21, subdomains=600, Signal extracted at r*=100 with primary spin a=0.99995M With zero initial data and a Gaussian(μ=25,σ=6) momentum Grid [-2100,1200] $\begin{array}{c} m=2\\ N=10, \ subdomains=700,\\ Signal \ extracted \ at \ r^{*}=100 \ with \ primary \ spin \ a=0.7M\\ With \ zero \ initial \ data \ and \ a \ Gaussian(\mu=25,\sigma=6) \ momentum\\ Grid \ [-1100,400] \ with \ R=150\\ \end{array}$

[1] Burko, Lior M., and Gaurav Khanna. "Late-time Kerr tails: generic and non-generic initial data sets, 'up'modes, and superposition." Classical and Quantum Gravity 28, no. 2 (2011): 025012.

Scalar Energy Fluxes I

$$\begin{split} \dot{\psi}_{\ell m} &= -\pi_{\ell m} \\ -\left(1 + \frac{\Delta a}{(r^2 + a^2)}c_{\ell m}^{\ell} - H^2\right)\dot{\pi}_{\ell m} &= -\left(1 - H\right)^2\phi'_{\ell m} - 2H\left(1 - H\right)\pi'_{\ell m} \\ &- H'\left(1 - H\right)\pi_{\ell m} - \frac{4imMar}{(r^2 + a^2)^2}\pi_{\ell m} \\ &+ H'\left(1 - H\right)\phi_{\ell m} - V_{\ell m}(r)\psi_{\ell m} + g_{\ell m}(t,r) \\ \dot{\phi}_{\ell m} &= -\pi'_{\ell m}. \end{split}$$

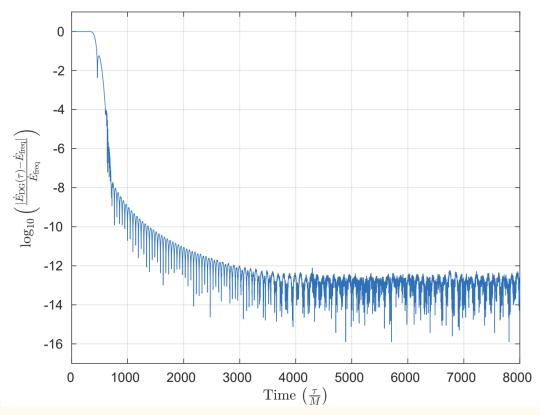
Where for a particle in circular orbit,

$$g_{\ell m}(t,r) = \frac{-4\pi q}{u^t \left(r_p^2 + a^2\right)^{1/2}} \overline{Y_{\ell m}}\left(\frac{\pi}{2}, \phi_p(t)\right) \delta\left(r_* - r_{*,p}\right).$$

Scalar Energy Fluxes II

$$\dot{E} = -\frac{1}{4\pi} \sum_{\ell,m} \psi_{,t}^{\ell m} \overline{\psi_{,r}^{\ell m}} = \frac{1}{4\pi} \sum_{\ell,m} \left| \psi_{,\tau}^{\ell m} \right|^2$$

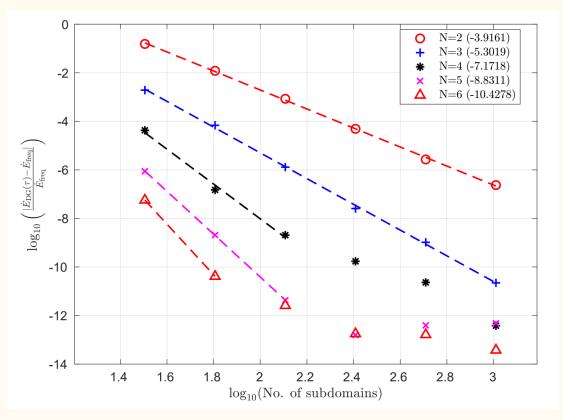
Alg.	Energy Flux	Rel. Error
BHPTK	$2.1676683889035 \times 10^{-6}$	1.7×10^{-12}
DG	$2.1676683889071 \times 10^{-6}$	1.7 × 10
BHPTK		1.3×10^{-10}
DG		1.3×10
BHPTK	$8.8539629089954 \times 10^{-13}$	2.7×10^{-10}
DG		2.7×10
BHPTK	$3.5707073944101 \times 10^{-14}$	3.2×10^{-11}
DG	$3.5707073942955 \times 10^{-14}$	3.2×10
BHPTK	$2.1814822732028 \times 10^{-16}$	7.9×10^{-11}
DG	$2.1814822730317\times10^{-16}$	7.9×10
	BHPTK DG BHPTK DG BHPTK DG BHPTK DG BHPTK	BHPTK $2.1676683889035 \times 10^{-6}$ DG $2.1676683889071 \times 10^{-6}$ BHPTK $3.7609900151243 \times 10^{-11}$ DG $3.7609900156162 \times 10^{-11}$ BHPTK $8.8539629089954 \times 10^{-13}$ DG $8.8539629113568 \times 10^{-13}$ BHPTK $3.5707073944101 \times 10^{-14}$ DG $3.5707073942955 \times 10^{-14}$ BHPTK $2.1814822732028 \times 10^{-16}$



Scalar Energy Fluxes II

$$\dot{E} = -\frac{1}{4\pi} \sum_{\ell,m} \psi_{,t}^{\ell m} \overline{\psi_{,r}^{\ell m}} = \frac{1}{4\pi} \sum_{\ell,m} \left| \psi_{,\tau}^{\ell m} \right|^2$$

(ℓ,m)	Alg.	Energy Flux	Rel. Error
(2,2)	BHPTK	$2.1676683889035 \times 10^{-6}$	1.7×10^{-12}
	DG	$2.1676683889071 \times 10^{-6}$	1.7×10
(4,2)	BHPTK	$3.7609900151243 \times 10^{-11}$	1.3×10^{-10}
	DG	$3.7609900156162 \times 10^{-11}$	1.3×10
(5,3)	BHPTK	$8.8539629089954 \times 10^{-13}$	2.7×10^{-10}
	DG	$8.8539629113568 \times 10^{-13}$	2.7×10
(9,7)	BHPTK	$3.5707073944101 \times 10^{-14}$	3.2×10^{-11}
	DG	$3.5707073942955 \times 10^{-14}$	3.2×10
(15,15)	BHPTK	$2.1814822732028 \times 10^{-16}$	7.9×10^{-11}
	DG	$2.1814822730317 \times 10^{-16}$	7.9×10



Conclusion (key takeaways and tl;dr)

Work done

- Solved scalar Teukolsky equation in Kerr, with and without the hyperboloidal layers in time-domain
- Modeled the secondary black hole as a delta function in the dG scheme
- Price law verified
- Verified the spectral (super)convergence

Work in progress

- Implementing in C++
- Adding parallelization

Future works

- Computation of gravitational waveforms
- Eccentric orbits
- Efficient, accurate and flexible time domain solver for EMRIs

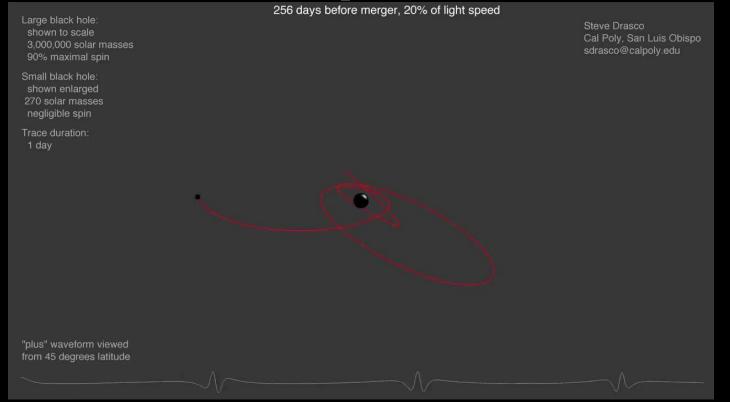
That's all folks!

Questions /Comments?

Relevant paper coming soon to your nearest arxiv server...

Extra Slides

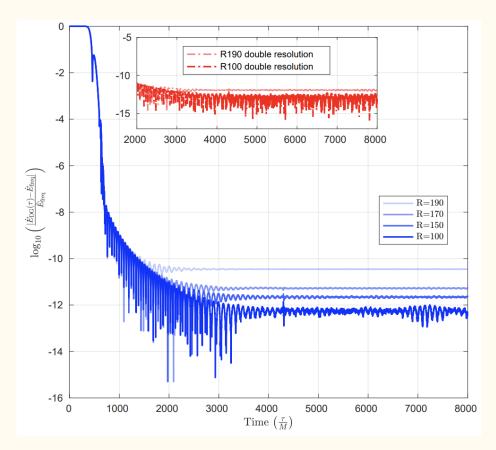
Extreme Mass Ratio Inspirals

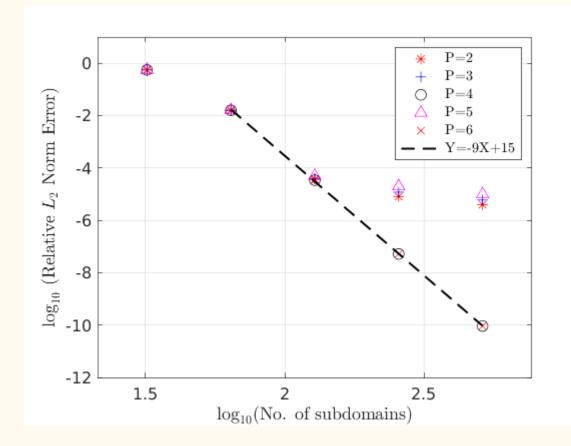


Scalar Energy Fluxes III

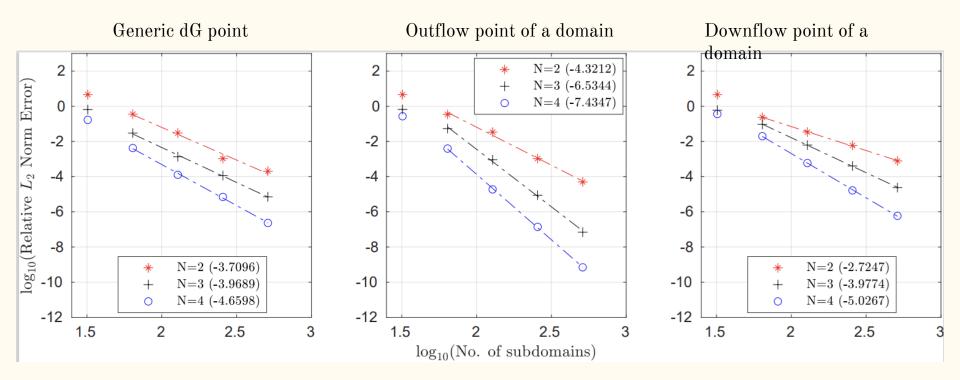
Effects of hyperboloidal layer parameters on the solution :

- Values at the null infinity depend on R, S and the resolution
- Can be explained by how well the compactification function is captured

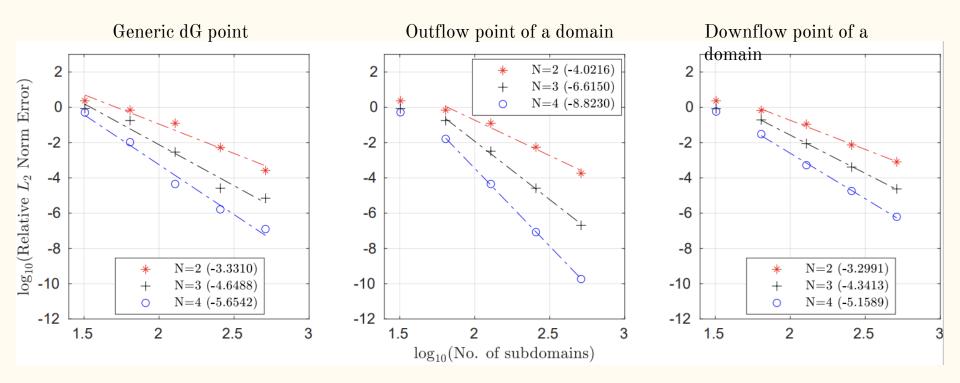




Error convergence at different points (to left of layers)



Error convergence at different points (inside the layers)



Results and code test : Schwarzschild Price Tail¹ I

Solution extracted inside the layer

N=7, subdomains=400, Signal extracted at r*=240M With moving initial data as Gaussian(30,10) Grid [-200,1200] with R=200

 $\Psi \propto t^{-p}$

For moving initial conditions p = -2l - 3



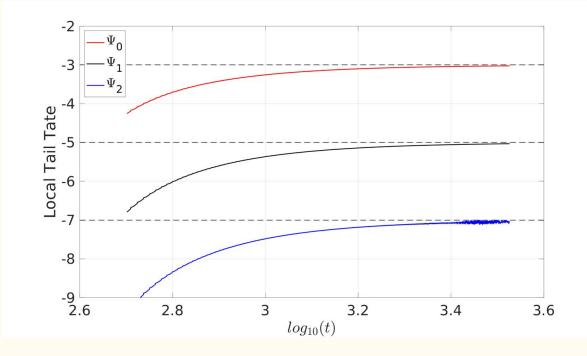
Results and code test : Schwarzschild Price Tail¹ II

Solution extracted inside the layer

N=7, subdomains=400, Signal extracted at r*=240M With moving initial data as Gaussian(30,10) Grid [-200,1200] with R=200

 $\Psi \propto t^{-p}$

For moving initial conditions p = -2l - 3



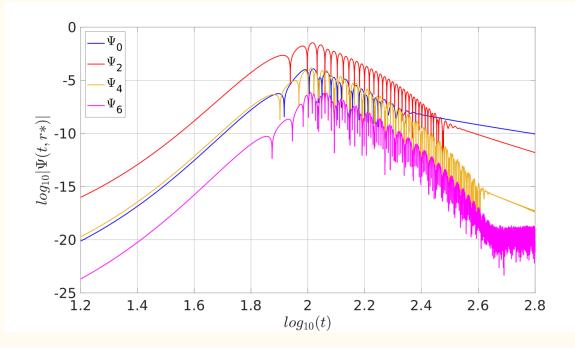
Results and code test : Kerr Price Tail I

N=16, Subdomains=1000, Signal extracted at r*=99M and a=0.8

With static Gaussian(2,10) initial data in I=2 mode

 $\Psi \propto t^{-p}$

For static initial conditions p = -2l - 4



Results and code test : Kerr Price Tail I

N=16, Subdomains=1000, Signal extracted at r*=99M and a=0.8

With static Gaussian(2,10) initial data in I=2 mode

 $\Psi \propto t^{-p}$

For static initial conditions p = -2l - 4

