Resonant dynamics of extreme mass-ratio inspirals in a perturbed Kerr spacetime

arXiv:2306.06576 Z. Pan, T.D. Lee Institute, Shanghai *with H. Yang, L. Bernard, B. Bonga*

2023.07.04 @26th Capra Meeting

Outline

- Phenomenology of near-resonance orbits
 - Poincare map and rotation number (3 kinds of orbits)
- Unified description in action-angle variables
 - Simple harmonics
- Impact for EMRI evolution
 - Phase shifts

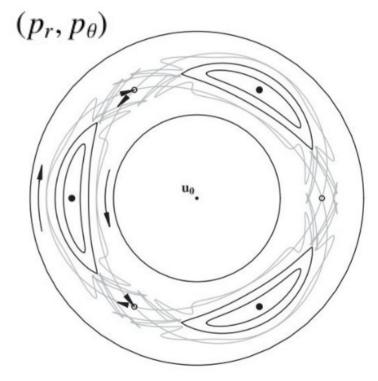
1. Phenomenology: Poincare map

A test particle in Kerr \rightarrow integrable (r, θ) + in perturbed Kerr \rightarrow non-integrable

Poincare map: $(r, p_r)_{\theta=\pi/2}$

3 kinds of orbits

- Regular orbits (O1)
- Chaotic transitional orbits (O2)
- On-resonance orbits (O3)



Cartoon Poincare Map Lukes-Gerakopoulos+ 2010

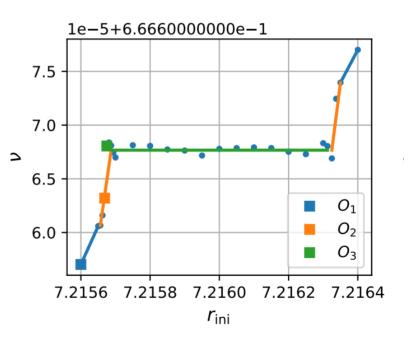
1. Phenomenology: rotation number

A test particle in a perturbed Kerr: $(r, \theta) + (p_r, p_{\theta})$

Rotation number: $\nu := \frac{\langle \Omega' \rangle}{\langle \Omega^{\theta} \rangle}$

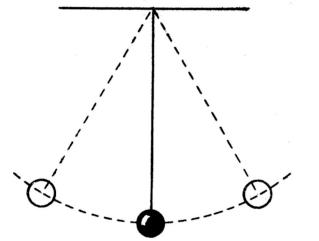
3 kinds of orbits

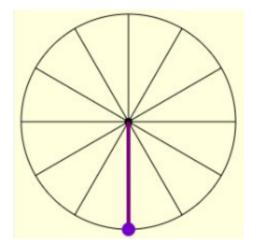
- Regular orbits (O1)
- Chaotic transitional orbits (O2)
- On-resonance orbits (O3)



2. Physics and a unified description

Reduced DOF and simple harmonics





Libration \rightarrow regular orbits (O1) *Rotation* \rightarrow on-resonance orbits (O3) *Transition* \rightarrow chaotic transitional orbits (O2)

Unified description: in action-angle variables

• Kerr spacetime $\mathcal{J}_{\alpha} = \mathcal{J}_{\alpha}(\{x^{\beta}, p_{\beta}\}), \quad q^{\alpha} = q^{\alpha}(\{x^{\beta}, p_{\beta}\}).$

$$H_0(x^{\mu}, p_{\nu}) = \frac{1}{2} g^{\mu\nu}_{\text{Kerr}} p_{\mu} p_{\nu} \longrightarrow H_0^{aa} = H_0^{aa}(\mathcal{J}_{\alpha})$$
$$\dot{\mathcal{J}}_{\alpha} = -\frac{\partial H_0}{\partial q^{\alpha}} = 0, \quad \dot{q^{\alpha}} = \frac{\partial H_0}{\partial \mathcal{J}_{\alpha}} = \Omega^{\alpha}$$
Resonance : $n_r \Omega^r + n_{\theta} \Omega^{\theta} = 0$

Unified description: in action-angle variables

• Kerr spacetime $\mathcal{J}_{\alpha} = \mathcal{J}_{\alpha}(\{x^{\beta}, p_{\beta}\}), \quad q^{\alpha} = q^{\alpha}(\{x^{\beta}, p_{\beta}\}).$

$$H_0(x^{\mu}, p_{\nu}) = \frac{1}{2} g^{\mu\nu}_{\text{Kerr}} p_{\mu} p_{\nu} \longrightarrow H_0^{aa} = H_0^{aa}(\mathcal{J}_{\alpha})$$
$$\dot{\mathcal{J}}_{\alpha} = -\frac{\partial H_0}{\partial q^{\alpha}} = 0, \quad \dot{q}^{\alpha} = \frac{\partial H_0}{\partial \mathcal{J}_{\alpha}} = \Omega^{\alpha}$$
Resonance : $n_r \Omega^r + n_{\theta} \Omega^{\theta} = 0$

• Perturbed Kerr $H(x^{\mu}, p_{\nu}) = \frac{1}{2}g^{\mu\nu}p_{\mu}p_{\nu} = H_{0} + \epsilon H_{int} \longrightarrow H_{0}(\mathcal{J}_{\alpha}) + \epsilon H_{int}(\mathcal{J}_{\alpha}, q^{\beta})$ $\frac{d\mathcal{J}_{\alpha}}{d\tau} = -\epsilon \frac{\partial \mathcal{H}_{int}}{\partial q^{\alpha}}, \quad \frac{dq^{\alpha}}{d\tau} = \Omega_{\alpha} + \epsilon \frac{\partial \mathcal{H}_{int}}{\partial \mathcal{J}_{\alpha}},$

Near Identity Transformation: resonance as a driven force

e.g., 2/3 resonance $N = (N_r, N_{\theta}) = (-3, 2)$

Near Identity Transformation: resonance as a driven force

$$\begin{split} \tilde{q}^{\alpha} &= q^{\alpha} + \epsilon \sum_{\substack{n_{\alpha}\Omega^{\alpha} \neq 0}} \frac{1}{n_{r}\Omega^{r} + n_{\theta}\Omega^{\theta}} \frac{\partial H_{n_{j}}}{\partial \mathcal{J}_{\alpha}} e^{i(n_{r}q^{r} + n_{\theta}q^{\theta})} ,\\ \tilde{J}_{\alpha} &= J_{\alpha} + \epsilon \sum_{\substack{n_{\alpha}\Omega^{\alpha} \neq 0}} \frac{n_{\alpha}}{n_{r}\Omega^{r} + n_{\theta}\Omega^{\theta}} H_{n_{j}} e^{i(n_{r}q^{r} + n_{\theta}q^{\theta})} . \end{split}$$
 We have

$$\frac{d\tilde{q}^{\alpha}}{d\tau} = \Omega_{\alpha} + \epsilon \sum_{k \in \mathbb{Z}} \frac{\partial H_{k\mathbf{N}}}{\partial \mathcal{J}_{\alpha}} e^{i(kN_r q^r + N_{\theta} q^{\theta})},$$
$$\frac{d\tilde{\mathcal{J}}_{\alpha}}{d\tau} = -i\epsilon N_{\alpha} \sum_{k \in \mathbb{Z}} kH_{k\mathbf{N}} e^{i(kN_r q^r + N_{\theta} q^{\theta})}.$$

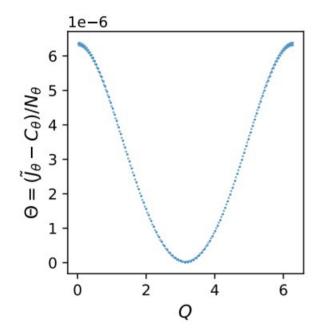
e.g., 2/3 resonance $N = (N_r, N_{\theta}) = (-3, 2)$

Not all action angle variables are independent.

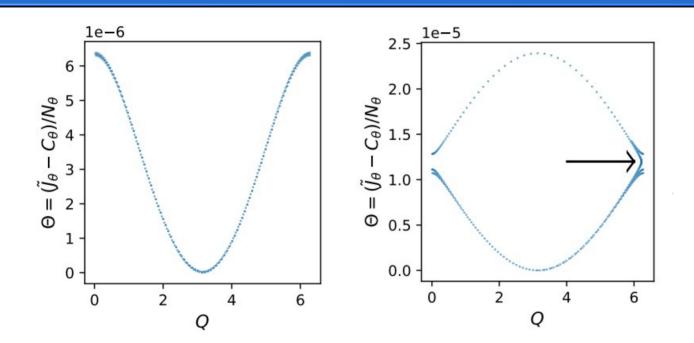
$$\frac{dQ}{d\tau} := \frac{d}{d\tau} (N_r \tilde{q}^r + N_\theta \tilde{q}^\theta) = N_\alpha \Omega^\alpha + O(\epsilon) = \Delta \Omega = O(\epsilon)$$
$$\frac{d\Theta}{d\tau} := \frac{1}{N_r} \frac{d\tilde{J}_r}{d\tau} = \frac{1}{N_\theta} \frac{d\tilde{J}_\theta}{d\tau} = \sum H_{k\mathbf{N}} e^{ikQ} = O(\epsilon)$$

Near-resonance orbits : 1 d.o.f effective Hamiltonian

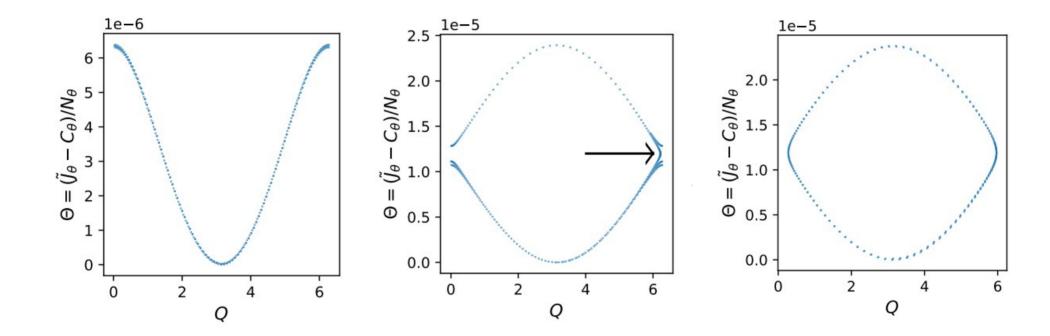
Numerical check: $(x, p) \rightarrow (q, J) \rightarrow (Q, \Theta)$



Numerical check: $(x, p) \rightarrow (q, J) \rightarrow (Q, \Theta)$



Numerical check: $(x, p) \rightarrow (q, J) \rightarrow (Q, \Theta)$



3. Impact for EMRI evolution

$$\frac{dQ}{d\tau} = \sum_{\alpha} a^{\alpha} \tilde{\mathcal{J}}_{\alpha}$$
$$\frac{d\tilde{\mathcal{J}}_{\alpha}}{d\tau} = -N_{\alpha} H_{\text{res}} \sin Q + q G_{\alpha}$$

$$\Delta \tilde{\mathcal{J}}_{\alpha} = -N_{\alpha} H_{\rm res} \int_{-\infty}^{\infty} \sin Q(\tau) d\tau$$

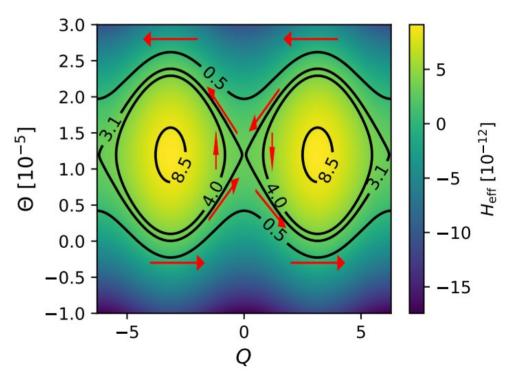
Non-adiabatic limit:

 $t_cross < t_res (h_res < q = m/M)$

Crossing the resonance via passing through all the orbits

$$\delta J \sim h_{\rm res} t_{\rm cross} \sim h_{\rm res} / \sqrt{q}$$

 $\delta \Psi \sim \delta J/q \sim h_{\rm res} / q^{3/2}$
 $\delta \Psi|_{\rm Kerr} \sim 1/q^{1/2}$ (Flanagan+2012)

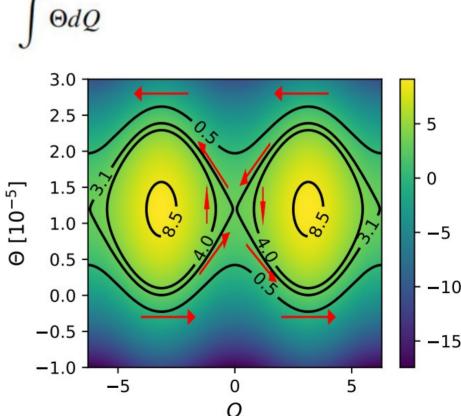


Adiabatic limit: t_cross > t_res (h_res > q)

Area conserved as an adiabatic invariant

Circumventing resonance via chaotic transitional orbits.

 $\Delta \tilde{J}_{\alpha} = -N_{\alpha}H_{\rm res} \int \sin Q(\tau)d\tau + \Delta \tilde{J}_{\alpha,transit}$ $\delta J \approx \delta \Theta \sim \sqrt{h_{\rm res}}$ $\delta \Psi \sim \delta J/q \sim \sqrt{h_{\rm res}}/q$

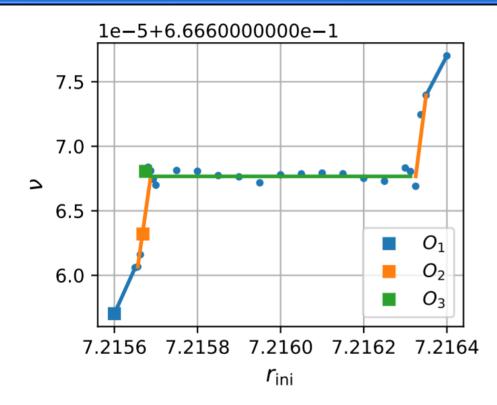


Summary

- Rich phenomena of resonant dynamics can be understood with effective Hamiltonian of simple harmonics.
- Only orbits in the transitional regime are chaotic.
- Impact for resonance crossing
 - In adiabatic regime, resonance crossing does not happen because resonances are avoided by the transitional orbits.

32nd Texas Symposium on Relativistic Astrophysics

Near-resonance orbits : rotation numbers



$$\nu := \frac{\langle \Omega^r \rangle}{\langle \Omega^\theta \rangle}$$

3 kinds of orbits:

01, 02, 03

Integrable systems and KAM theorem

• **Integrable system:** # degrees of freedom = # conserved quantities

e.g. a test particle in the Kerr spacetime:

 $(t, r, \theta, \phi) \longleftrightarrow (H, E, L, C)$

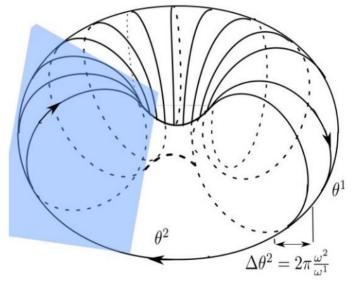
e.g. 2-d.o.f. integrable system:

orbit wraps on a 2-torus (Cardenas-Avendano+2018)

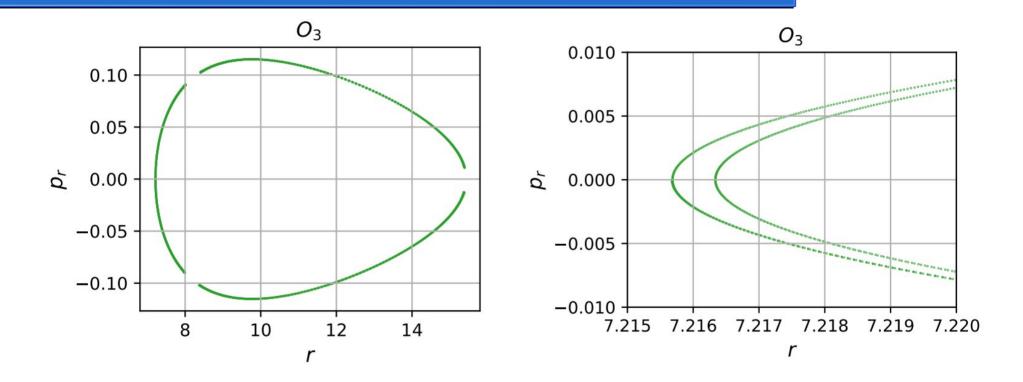
• KAM theorem:

an integrable system + a perturbation \rightarrow non-integrable

Chaos can occur at resonances. e.g. Quadractic Gravity (Donoghue+2021) $g = g_{\text{Kerr}} + h$

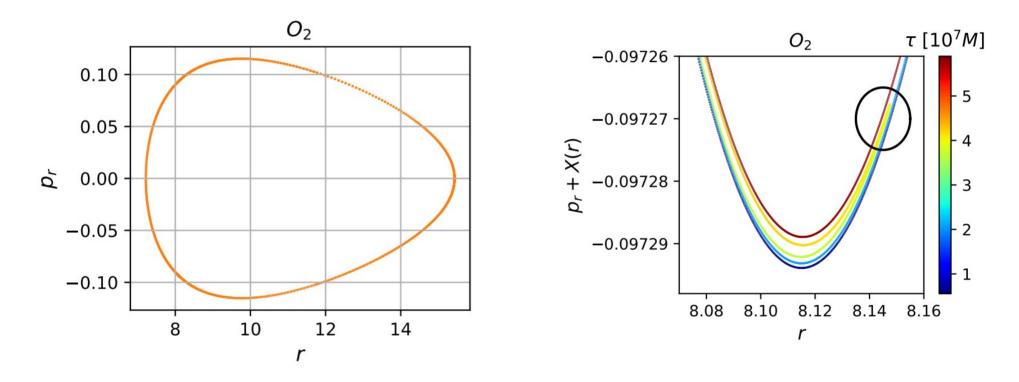


Near-resonance orbits : phenomenology

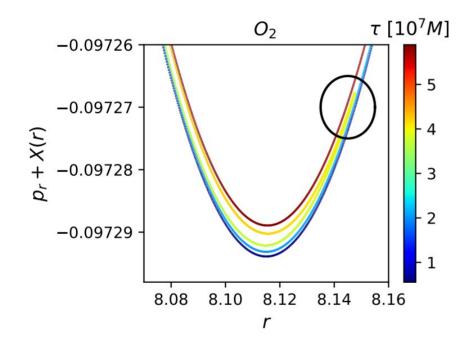


Poincare maps of O3 → On-resonance Orbit

Near-resonance orbits : phenomenology

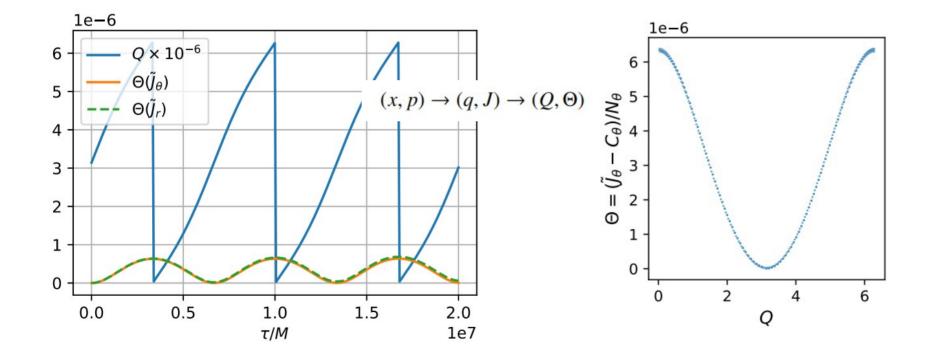


O2 Poincare map: e.g. spinning BH in Qudractic Gravity (Donoghue+2021)



Anti-clockwise → clockwise

Regular orbit O1



Chaotic transitional orbit O2

