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Motivation
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A host of  current (LVK, EHT, PTAs, NICER, …) and future (LISA, 
Athena, ET, Cosmic Explorer, PTAs, …) observations will reveal the 
nature of  black holes and neutron stars

 → Can we use them to search for new fundamental physics? 

Key points: 

v New physics → New fields
v Theories predict structure and dynamics of  compact objects

Case study: scalar fields and black holes

 → Light scalars ubiquitous in extensions of  GR or the SM 
 → Can we measure scalar charge with EMRIs?



No-hair theorems

S.W. Hawking, Comm. Math. Phys. 25, 152 (1972)

Minimally coupled, Brans-Dicke; stationary

Self-interacting, Scalar-tensor theories; stationary

Shift-symmetric; static, spherically symmetric/slowly 
rotating, assumptions on the current

Asymptotically flat black holes have no scalar hair 

T. P. S. and V.  Faraoni, Phys. Rev. Lett. 108, 081103 (2012)

L. Hui, A. Nicolis, PRL 110, 241104 (2013)
T.P.S. and S.-Y. Zhou, PRL112, 251102 (2014)
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No difference from GR?
Actually there is...

Perturbations are different

…but hard to excite in astrophysical setting!

Interesting exceptions exist, e.g. superradiance for 
axions

E. Barausse and T.P.S., Phys. Rev. Lett. 101, 099001 (2008)

A. Arvanitaki and S. Dubovksy, Phys. Rev. D 83, 044026 (2011)
R. Brito, V. Cardoso and P. Pani, Lect.Notes Phys. 906, 1 (2015)
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Hairy black holes
Consider the action

The corresponding scalar equation is

T.P.S. and S.-Y. Zhou, PRL 112, 251102 (2014); 
    Phys. Rev. D 90, 124063 (2014).

At small coupling/weak field identical to exponential coupling 
of  dilaton in string theory

P. Kanti et al., Phys. Rev. D 54, 5049 (1996)
N. Yunes and L. Stein, Phys. Rev. D 83, 104002 (2011)

Solve to first order in the coupling 

metric is Schwarzschild, 
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Scalar charge

Regularity on the horizon implies

The scalar charge is fixed to be 

Confirmed with numerical scalar collapse
R. Benkel, T.P.S. and H. Witek, Phys. Rev. D 94 (R), 121503 (2016);

          Class. Quant. Grav. 34, 064001 (2017)

More generally, for shift-symmetric scalars

M. Saravani & T.P.S., Phys. Rev. D 99, 12, 124004 (2019)

P / ↵

Z

H

naGa G = raGa
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Light scalars and GW

BH Binaries EMRIs

❖ dipole emission

❖ additional energy flux, 
i.e. change in orbital 
dynamics

❖ Modified waveform

❖ Small mass ratio

❖ very long inspiral

❖ Precise mapping of  
spacetime of  the 
primary

q = mp/M << 1
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BH mass and charge
So far we’ve seen two cases

Theories that are covered by no-hair theorems

An exception in which the scalar charge is fixed to be 

More generally, for shift-symmetric scalars

and large (enough) BHs are effectively Kerr BHs!

M. Saravani & T.P.S., Phys. Rev. D 99, 12, 124004 (2019)

P / ↵

Z

H

naGa G = raGa

If        is the only relevant scale for the BH

↵ << M2 ! P/M << 1

M
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Probes for massless scalars
BH Binaries EMRIs

weaker bounds on charge 
for larger masses

stronger bounds on charge, 
but from scalar emission!

Ultra-light scalars: same except

❖ superradiance-powered clouds 
❖ spin-induced scalarization

A. Maselli, N. Franchini, L. Gualtieri, and T.P.S, PRL 125, 14, 141101 (2020)
A. Maselli, N. Franchini, L. Gualtieri, T.P.S, S. Barsanti, P. Pani, Nature Astronomy (2022) 

 

S. Barsanti, A. Maselli , T.P.S, L. Gualtieri, PRL (accepted), arXiv:2212.03888 [gr-qc]
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EMRIs beyond GR

Define dimensionless 

Assume

S [g,', ] = S0 [g,'] + ↵Sc [g,'] + Sm [g,', ]

S0 =

Z
d4x

p
�g

16⇡

✓
R� 1

2
@µ'@

µ'

◆

⇣ ⌘ ↵

Mn
= qn

↵

mn
p

↵

mn
p

 1

and solutions continuously connected to GR as ↵ ! 0

Then contributions from      are suppressed by at least     Sc qn

A. Maselli, N. Franchini, L. Gualtieri, and T.P.S, PRL 125, 14, 141101 (2020) 
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EMRIs beyond GR

The field equations then become

A. Maselli, N. Franchini, L. Gualtieri, and T.P.S, PRL 125, 14, 141101 (2020) 

G↵� = 8⇡mp

Z
�(4) (x� yp(�))p

�g

dy↵p
d�

dy�p
d�

d�

⇤' = �4⇡dmp

Z
�(4) (x� yp(�))p

�g
d�

We use these to study an EMRI with 

M = 106M� J/M2 = 0.9 mp = 10M�

Modelling: perturbative, quadrupole approximation, 
equatorial orbit
Parameter estimation: Fischer matrix analysis
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Scalar Charge

Figure 1 | Faithfulness between the GW plus polarization computed with and

without the scalar charge, as a function of the latter and for different signal

durations. The signal duration is measured in months (6 or 12) before the plunge.
The horizontal line identifies the threshold of distinguishability, F . 0.988, set
up by SNR of 30.

from the innermost stable circular orbit (ISCO). Further details on the
source parameters are discussed in the Methods Section. We shall con-
sider values of the signal-to-noise ratio (SNR) for LISA detection of
EMRIs ranging from 30 to few hundreds, reflecting conservative or
more optimistic expectations2 based on rather uncertain event-rate es-
timates for EMRIs.

A preliminary assessment of the detectability of the scalar charge
can be made using the evolution of the phase of the GW signal. The
fact that the phase difference between binaries with and without scalar
charge exceeds a certain threshold is an indication that the scalar charge
should be detectable by LISA after twelve months of observation. We
have calculated the phase difference and it is indeed above threshold
even for values of the scalar charge as small as d ⇠ 5 ⇥ 10�3. More
details are given in Methods.

A more quantitative analysis on LISA’s ability to detect a scalar
charge is given in Figure 1, which shows the faithfulness F between
two GW signals emitted by binaries with and without the charge. The
faithfulness (see the Methods below for a precise definition) provides
an estimate of how much two signals differ, weighted by the noise spec-
tral density of LISA. Given the SNR ⇢ of a signal, values of F smaller
than ⇠ 1�D/(2⇢2), with D dimension of the model (⇠ 10), indicate
that the two waveforms are significantly different and don’t provide a
faithful description of one another.20–22 For ⇢ = 30 this requirement
translates into F . 0.988. Figure 1 shows the values of F for the
chose prototype of binary configuration. After one year the faithful-
ness is always smaller than the threshold set by ⇢ = 30, even for scalar
charges as small as d & 0.01. For the same configuration, on a pe-
riod of just six months before the plunge, the faithfulness is below the
threshold already for charges d & 0.05.

The analysis carried out so far highlights two important aspects: (i)
the scalar charge provides a significant shift in the phase of the GW
signal emitted by EMRIs, (ii) the dephasing induces a mismatch in the
template with respect to the zero-charge case, which can potentially
lead to a severe loss of events and to a bias in the estimation of the
waveform parameters.21 This suggests that one year of LISA observa-
tions of EMRIs may be able to reveal the presence of a scalar charge as
small as d ⇠ 0.005� 0.01.

The dephasing and the faithfulness, however, don’t take fully into
account possible degeneracies among the waveform parameters, which
may jeopardize our ability to constrain the scalar charge. A more so-
phisticated study requires a joint investigation of the full parameter
space, which includes correlations among d and other quantities char-

Figure 2 | Corner plot for the probability distribution of the masses, primary

spin and secondary charge, inferred after one year of observation with LISA.

We consider a binary system with d = 0.05 and SNR of 150. Diagonal (off-
diagonal) boxes refer to marginalized (joint) distributions. Vertical lines show the
1-� interval for each waveform parameters. Colored contours within the joint
distributions correspond to 68% and 95% probability confidence intervals. In the
top right corner of each off-diagonal panel we show the correlation coefficient cij
between the parameters (i, j) of the joint distribution.
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Figure 3 | Uncertainties on the scalar charge for prototype EMRIs observed

with different SNR after one year of observation by LISA. (Top panel) Rela-
tive error on the scalar charge as a function of d for EMRIs SNR of 30 and 150.
(Bottom panel) 3-� interval around the true values of the scalar charge inferred
from LISA observations with the two values of the SNR also considered in the top
panel. Dashed curves in the top panel refer to the analytic fit �d = �/d with
� ' 4.18⇥ 10�4 and � ' 2.09⇥ 10�3 for SNR of 150 and 30, respectively.

2

A. Maselli, N. Franchini, L. Gualtieri, T.P.S, S. Barsanti, P. Pani, Nature Astronomy (2022) 
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Perspectives

eccentric orbits 

light scalars

improved waveforms and MCMCs

resonances

environmental effects

finite-size effects and self-force

S. Barsanti, N. Franchini, L. Gualtieri, A. Maselli , T.P.S, Phys. Rev. D 106, 044029 (2022)]

L. Speri et al, in preparation

More accurate modelling and data analysis is needed
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sGB coupling

acterizing the EMRI GW emission. In the following we perform such
an analysis, assessing the capability of LISA to perform an actual mea-
surement of the scalar charge.

Figure 2 shows the probability distribution obtained using a Fisher
matrix approach (see Methods) for the component masses, the spin of
the primary, and the scalar charge of the secondary, for EMRIs ob-
served one year before the plunge with d = 0.05 and SNR of 150.
This analysis shows that a single detection can provide a measurement
of the scalar charge with a relative error smaller than 10%, with a prob-
ability distribution that does not have any support on d = 0 at more
than 3-�. Off-diagonal panels, yielding 68% and 98% joint probability
confidence intervals between the source parameters, also show that the
charge is highly correlated with the secondary mass and anti-correlated
with the spin parameter and the mass of the primary.

Figure 3 shows the error in the scalar charge as a function of the
scalar charge itself, for EMRIs detected by LISA with SNR ranging
from 30 to 150. The errors on d can also be accurately fitted with a
simple law of the form �

fit
d = �/d, where � ' 2.09 ⇥ 10�3 (� '

4.18 ⇥ 10�4) for SNR of 30 (150). In the top panel we show the
relative error �d/d and the analytical fit; in the bottom panel we show
the 3-�d intervals around the injected values of the scalar charge.

Our analysis shows that one year of EMRI observation can pinpoint
a scalar charge smaller than ⇠ 0.3 with percent accuracy. For an SNR
of 30 a charge d ⇠ 0.1 could be constrained to consistently exclude the
value d = 0. For the louder signals we consider, LISA could constrain
a scalar charge as small as d ⇠ 0.05 to be inconsistent with zero at 3-�
confidence level.

Detecting and measuring the scalar charge of a compact object
would be of enormous importance, as first evidence of new physics,
regardless of the origin of the charge or the nature of the compact ob-
ject. Indeed, so far our analysis and results have been theory-agnostic.
However, it is worth pointing out that in many cases the scalar charge
is uniquely determined by theoretical parameters that mark deviations
from GR or the Standard Model. In such cases, a measurement of the
scalar charge can be used to measure these parameters. LISA will pro-
vide impressive precision for that.

Let us demonstrate this point using a simple but characteristic ex-
ample. Assume that the secondary body is a black hole and the scalar
field is massless (shift-symmetric). No-hair theorems then dictate that
there cannot be a scalar charge unless the scalar field couples to the
Gauss–Bonnet invariant, RGB = R

2
� 4Rµ⌫R

µ⌫ + Rµ⌫↵�R
µ⌫↵�

(where Rµ⌫↵� , Rµ⌫ are the Riemann and the Ricci tensor, respectively,
and R is the Ricci scalar), as follows, ↵'RGB, where ↵ is the new
coupling constant.12 In this case, the relation between ↵ and the scalar
charge d of a BH has the simple form ↵ ' 2dµ2

� 73d3
µ
2
/24023.

To study the constraints on ↵ from LISA observations, we draw
N = 105 samples of (µ, d)i=1,...N from the joint probability distribu-
tion of the secondary mass and scalar charge obtained from the Fisher
analysis. We then compute N values of ↵ building the corresponding
probability density functions. Figure 4 shows P(

p
↵) for our prototype

EMRIs, for d = 0.05 and d = 0.2. Vertical lines in each panel iden-
tify the 90% confidence intervals of the coupling constant. Even for
d = 0.05 the probability distribution does not have support on ↵ = 0.
This analysis demonstrates that, in theories where the scalar charge is
determined by theoretical parameters, EMRI observations by LISA can
be used to measure these parameters with unprecedented accuracy.

In summary, our results demonstrate that EMRI observations by
LISA will be able to detect and potentially measure scalar charges to
exquisite accuracy. Our analysis and results are independent of the ori-
gin of the charge, and are hence theory-agnostic. We have also shown
that a further analysis can allow one to measure the coupling parame-
ters for specific theories.

This is the first attempt to perform a rigorous estimation of the

Figure 4 | Probability distribution of the dimensionful coupling constant of

shift-symmetric Gauss Bonnet gravity inferred from constraints made by

LISA. Results refer to EMRIs with d = (0.05, 0.2) and SNR of 150. Verti-
cal lines identify 90% intervals around the injected values of the scalar charge,p
↵ = 4.67+0.59

�0.69 km and
p
↵ = 9.313+0.079

�0.080 km for d = 0.05 and
d = 0.2, respectively (our normalization for ↵ is different from the one used
in some of the literature 24, 25). The height of the P(

p
↵) distribution has been

rescaled to unity.

measurability of beyond-GR effects with EMRIs. The EMRI template
we developed here is only the starting point of a more refined analysis,
which is necessary to assess LISA’s full potential to detect fundamen-
tal fields and new physics beyond GR. A number of improvements to
this template would need to be made before it can be used for data
analysis. These include using more generic (eccentric, non-equatorial,
inclined) orbits,26–28 taking into account finite size effects and a full
self-force treatment, or considering further beyond-GR and Standard
Model effects, such as dark matter spikes or superradiant clouds. Envi-
ronmental effects, as produced by accretion disks, should also be con-
sidered, in order to study possible degeneracies with the scalar emis-
sion. However, such effects would in general carry a specific frequency
content, allowing to disentangle or partially alleviate correlations.29 On
the data analysis side, the next step is to perform Bayesian inference.30

Although producing more realistic templates is a major technical chal-
lenge, we expect that such templates would break degeneracies be-
tween source parameters, and could potentially enhance detection ca-
pabilities. Finally, data gaps, i.e. interruptions in the interferometric
measurements due to various astrophysical and instrumental factors,
may provide important challenges to be overcome. Studies in this con-
text are currently underway, showing how Bayesian methods can be
able to cure this problem and improve detection efficiency.31
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