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What about the spin of the secondary?
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⃗S

M ∼ 105−8M⊙

μ ∼ 100−2M⊙

Spin-curvature coupling: How the small 
body’s spin couples to curvature, and 

how that backreacts on its motion

Astrophysical black holes have spin!  

We also need to include the effect of 
the spin of the secondary 

in EMRI waveform models for LISA



Mathisson-Papapetrou-Dixon equations 

Dpα

dτ
= −

1
2

Rα
βγδu

βSγδ := f α
S /μ (1)

(2)
 is the spin 

vector of the secondary

Sμ = −
1
2

ϵμν
αβpνSαβ

 is the spin tensor of the 
secondary 

Sμν
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MPD equations follow by requiring conservation of stress-energy  ∇μTμν = 0

pμSμν = 0 (3)

Equations describing the motion of a spinning test body in curved spacetime

DSαβ

dτ
= pαuβ − pβuα

  is the spin-curvature forcef α
S

Tulczyjew-Dixon spin-supplementary condition 



Mathisson-Papapetrou-Dixon equations 

Duα

dτ
= −

1
2μ

Rα
βγδu

βSγδ

DSμ

dτ
= 0

(1)

(2)

Because we are studying this system in the very large mass-ratio limit and  when 
the spinning mass body is itself a black hole, we can take the leading-order-in-spin limit.

S = sμ2

…to leading-order in spin

In this case, the MPD equations simplify:

Motion of the small body

Evolution of spin vector



Conservative orbit of 
a small body around 

a black hole

Non-spinning body: 
Geodesic equations

Kinematics of an orbiting small body

··xα = f α
geo , f α

geo ≡ − Γα
βγ

dxβ

dτ
dxγ

dτ



Spinning body:  
Spin-curvature 

coupling

Non-spinning body: 
Geodesic equations

Kinematics of an orbiting small body

··xα = f α
geo , f α

geo ≡ − Γα
βγ

dxβ

dτ
dxγ

dτ
··xα = f α

geo + f α
SCF ,

Conservative orbit of 
a small body around 

a black hole

f α
SCF ≡ −

1
2μ

Rα
νλσuνSλσ

★ Coupling between curvature 
and small-body spin leads to 
spin-curvature force 
★ Pushes the motion of the 
small body away from the 
geodesic orbit and causes 
small body’s spin to precess

M. Mathisson,1937; A. Papapetrou, 
1951; W. G. Dixon, 1970



Non-spinning body: 
Geodesic equations

Kinematics of an orbiting small body

··xα = f α
geo , f α

geo ≡ − Γα
βγ

dxβ

dτ
dxγ

dτ
··xα = f α

geo + f α
SCF , f α

SCF ≡ −
1

2μ
Rα

νλσuνSλσ

Conservative orbit of 
a small body around 

a black hole

Spin-curvature force f α
SCF

★ Coupling between curvature 
and small-body spin leads to 
spin-curvature force 
★ Pushes the motion of the small 
body away from the geodesic 
orbit and causes small body’s 
spin to precessSpinning body:  

Spin-curvature 
coupling

M. Mathisson,1937; A. Papapetrou, 
1951; W. G. Dixon, 1970



Non-spinning body: 
Point-particle  

GW fluxes

Compute GW 
radiation using the  
Teukolsky equation 

−2𝒪 −2Ψ = 4πΣ𝒯

Gravitational 
radiation emitted 

due to a small body

Radiation due to an orbiting small body

The source term  in 
the Teukolsky equation 
can be found from the 

stress-energy tensor 
describing the small body

𝒯

Tμν

Tμν
geo = ∫ dτ (

μuμ
geouv

geo

−g
δ4 (xρ − zρ

geo(τ)))



Non-spinning body: 
Point-particle  

GW fluxes

Compute GW 
radiation using the  
Teukolsky equation 

−2𝒪 −2Ψ = 4πΣ𝒯

Spinning body: 
Spinning-particle 

GW fluxes

Gravitational 
radiation emitted 

due to a small body

The source term  in 
the Teukolsky equation 
can be found from the 

stress-energy tensor 
describing the small body

𝒯

Tμν

Radiation due to an orbiting small body

Tμν
spin = ∫ dτ ( p(μuv)

−g
δ4 (xρ − zρ(τ)) − ∇α( Sα(μuν)

−g
δ3 (xρ − zρ(τ))))Tμν

geo = ∫ dτ (
μuμ

geouv
geo

−g
δ4 (xρ − zρ

geo(τ)))



Kinematics of an 
orbiting small body

Orbital 
kinematics

GW radiation GW-driven inspiral

+ =

GW Radiation due to 
an orbiting small body

How do we build an inspiral? 
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Inspiral of an orbiting small body

Kinematics of an 
orbiting small body

Orbital 
kinematics

GW radiation GW-driven inspiral

+ =

Spinning body:  
Spinning-particle  

GW fluxes

Spinning body: 
MPD equations +

GW Radiation due to 
an orbiting small body

Generic orbit, any spin orientation

Skoupý, Lukes-Gerakopoulos, 
LVD & Hughes, 2023,  
arXiv:2303.16798



Inspiral of an orbiting small body

Kinematics of an 
orbiting small body

Orbital 
kinematics

GW radiation GW-driven inspiral

+ =

Spinning body:  
Spinning-particle  

GW fluxes

Spinning body: 
MPD equations

Generic inspiral: work in 
progress

Generic inspiral with any spin 
orientation

+ =

GW Radiation due to 
an orbiting small body

Generic orbit, any spin orientation

Skoupý, Lukes-Gerakopoulos, 
LVD & Hughes, 2023,  
arXiv:2303.16798



Non-spinning body: 
Point-particle  

GW fluxes

Kinematics of an 
orbiting small body

Orbital 
kinematics

GW radiation GW-driven inspiral

+ =

Generic inspiral with arbitrary 
spin orientation; but using 
point-particle GW fluxes

+ =

GW Radiation due to 
an orbiting small body

How do we build an inspiral? 

Spinning body:  
Spin-curvature 

coupling
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This work; LVD in 
collaboration with Hughes, 
Hanselman, Becker & Lynch



Overview of our model

Motivation: To incorporate some spinning secondary effects into generic 
Kerr waveforms. 

• We do not include the correction to the GW fluxes due to the spin of the 
secondary (see the next talk by Viktor Skoupý). 

• Therefore, our work is an intermediate step on the path towards 
waveforms which fully incorporate all spinning secondary effects.
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Parameterized by orbital 
elements {p, e, x}

Parameterized by orbital 
elements {p(t), e(t), x(t)}

Orbit evolves due to 
perturbing force

Sequence of 
osculating orbits

Osculating geodesic (OG) framework 

Inspiral of small body 
into a black hole

We use an osculating 
geodesic framework

Stitch together a sequence of 
osculating orbits to construct 

an inspiral

Geodesic orbit of a 
small body around a 

black hole

·Pi = Fi( ⃗P , ⃗q)
·qi = Υ(0)

i ( ⃗P ) + fi( ⃗P , ⃗q)
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⃗P = {p, e, x}
⃗q = {qr, qz, qs}

·Pi = 0
·qi = Υ(0)

i ( ⃗P )

Geodesic:



Parameterized by orbital 
elements {p, e, x}

Parameterized by orbital 
elements {p(t), e(t), x(t)}

Orbit evolves due to 
perturbing force

Sequence of 
osculating orbits

Osculating geodesic (OG) framework 

Inspiral of small body 
into a black hole

We use an osculating 
geodesic framework

Stitch together a sequence of 
osculating orbits to construct 

an inspiral

Geodesic orbit of a 
small body around a 

black hole

·Pi = Fi( ⃗P , ⃗q)
·qi = Υ(0)

i ( ⃗P ) + fi( ⃗P , ⃗q)
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⃗P = {p, e, x}
⃗q = {qr, qz, qs}

Post-geodesic:



Orbit evolves due to 
perturbing force

Osculating geodesic (OG) framework 

Inspiral of small body 
into a black hole

We use an osculating 
geodesic framework

Stitch together a sequence of 
osculating orbits to construct 

an inspiral

Geodesic orbit of a 
small body around a 

black hole
Adiabatic fluxes   

In
cl

in
at

io
n 

I

Eccentricity e
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Semilatus rectum p/M



Orbit evolves due to 
perturbing force

Osculating geodesic (OG) framework 

Inspiral of small body 
into a black hole

We use an osculating 
geodesic framework

Stitch together a sequence of 
osculating orbits to construct 

an inspiral

Geodesic orbit of a 
small body around a 

black hole
Adiabatic fluxes  +  

spin-curvature force  f α
SCF

In
cl

in
at

io
n 

I

Eccentricity eSemilatus rectum p/M
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Notice all the short 
timescale oscillations which 
our integrator must resolve!

We are only interested in 
the averaged behavior on 

long timescales

NIT: Near-Identity Transformation
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p0 = 10M, e0 = 0.2, x0 = 0.7, a = 0.7M

Dephasing between the spinning- and 
non-spinning-body trajectory.



Time

Original

NIT (averaged)

We use a generic NIT (Near-
Identity Transformation) to 

isolate the long timescale 
evolution (as in Philip Lynch’s 

talk on Tuesday)

[Work in collaboration with Philip Lynch]

NIT: Near-Identity Transformation
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p0 = 10M, e0 = 0.2, x0 = 0.7, a = 0.7M

Dephasing between the spinning- and 
non-spinning-body trajectory.

Pi → P̃i
qi → q̃i

·Pi = F̃i(P̃i)
·qi = Υ(0)

i ( ⃗P ) + f̃i(P̃i)



Time

Original

NIT (averaged)

★ Allows a 2-5 order of magnitude 
speed up in computation 

★ NIT averaged phases are the input  
we use for generating waveforms

[Work in collaboration with Philip Lynch]

NIT: Near-Identity Transformation

We use a generic NIT (Near-
Identity Transformation) to 

isolate the long timescale 
evolution (as in Philip Lynch’s 

talk on Tuesday)
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p0 = 10M, e0 = 0.2, x0 = 0.7, a = 0.7M

Dephasing between the spinning- and 
non-spinning-body trajectory.



Why use OG +  NIT formulation for 
spinning secondary effects?

• Will interface immediately with NIT set-up for self-force (as described by 
in talk by Philip Lynch); same parameterization and framework 

• Another formulation of spinning-body trajectories; another independent 
cross-check 

• May be useful to consider contribution from conservative and dissipative 
spinning-body sectors individually 
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Dephasing between the spinning- and  
non-spinning-body trajectory.  

Note: only point-particle Teukolsky 
source included here; dipolar correction 

exists (work by Viktor Skoupý et al.)

[Work in collaboration with Philip Lynch]
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Waveforms for equatorial orbitsEquatorial waveform with 
initial eccentricity of e = 0.5



Time

Spinning

Non-spinning

Generic waveform with 
initial eccentricity of e = 0.2
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Waveforms for generic orbits
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Equatorial waveform with 
initial eccentricity of e = 0.5



Some caveats
• Not a fully self-consistent model; only includes some of the spinning 
secondary effects. Everything is sufficiently modular that additional elements 
can be included straightforwardly. 

Missing post-adiabatic elements: the GW fluxes due to the dipole term in the 
stress-energy tensor, first- and second- order self-force. 

• Dephasings due to secondary spin contributions and self-force contributions 
could cancel each another in certain regions of parameter space 

• Dephasings alone are not sufficient to determine detectability; need a full 
Bayesian parameter estimation analysis
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Conclusions and some open questions…

★ We have computed fully generic spinning-body inspirals and waveforms with 
arbitrary spin alignment (arXiv:2305.08919) — but there are missing elements 

★ Natural next steps are to include more of the missing elements: e.g., include 
the GW backreaction due to the dipole term in the stress-energy tensor into our 
framework. (Conduct a careful comparison with the calculations of Skoupý & 
Lukes-Gerakopoulos.) 

★ Detectability of small-body spin for generic orbital configurations? Size of 
dephasing is not sufficient to assess detectability, need to do full Bayesian 
infererence study e.g., with few (Fast EMRI waveforms) 

★ Carter-like constant evolution for spinning secondary?
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Thank you!


