Extreme mass-ratio inspiral of a spinning body into

a black hole: Generic trajectory and waveforms

Lisa Drummond

and Prof. Scott Hughes
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What about the spin of the secondary?

Astrophysical black holes have spin!

~
~
.
A 3
) 3
1
|
4
24
L4
’
L 4

o U~ IOO_2M®

We also need to include the effect of
Spin-curvature coupling: How the small the spin of the seCQndary

body's spin couples to curvature, and in EMRI waveform models for LISA
how that backreacts on its motion




Mathisson-Papapetrou-Dixon equations

Equations describing the motion of a spinning test body in curved spacetime

/< is the spin-curvature force

SH is the spin tensor of the
secondary

Z : pv ap '
SH = — 56 aﬂpyS is the spin

vector of the secondary

Tulczyjew-Dixon spin-supplementary condition

MPD equations follow by requiring conservation of stress-energy V T =0
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Mathisson-Papapetrou-Dixon equations

...to leading-order in spin

Because we are studying this system in the very large mass-ratio limit and S = su? when
the spinning mass body is itself a black hole, we can take the leading-order-in-spin limit.

In this case, the MPD equations simplify:

Du* | B Bars
y = — Z—Rﬁyéu S’ (1) Motion of the small body
T H

DS*

= () (2) Evolution of spin vector

dr




Kinematics of an orbiting small body

Conservative orbit of

a small body around
a black hole




Kinematics of an orbiting small body

Conservative orbit of

a small body around * Coupllng between curvature

a2 black hole and small-body spin leads to
spin-curvature force

Spinning body:
Spin-curvature
coupling

M. Mathisson,1937; A. Papapetrou,
1951; W. G. Dixon, 1970




Kinematics of an orbiting small body

Conservative orbit of

a small body around
3 black)llmle and small-body spin leads to

spin-curvature force

% Coupling between curvature

¥ Pushes the motion of the small
body away from the geodesic
orbit and causes small body’s
Spinning body: spin to precess
Spin-curvature
coupling

in-curvature force f¢ -
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Rawlau
2/4 M. Mathisson,1937; A. Papapetrou,
1951; W. G. Dixon, 1970




Radiation due to an orbiting small body

radiation emitted

due to a small body

Gravitational

.
geo“ geo

ut u

5% <xp

Compute GW
radiation using the
Teukolsky equation

_2@ _2‘11 — 47[257/

The source term 5 in
the Teukolsky equation
can be found from the
stress-energy tensor T+
describing the small body



Radiation due to an orbiting small body

Gravitational
radiation emitted
due to a small body

Spinning body:
Spinning-particle
GW fluxes
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Compute GW
radiation using the
Teukolsky equation

_2@ _2‘11 — 47[257/

The source term 5 in
the Teukolsky equation
can be found from the
stress-energy tensor T+
describing the small body



How do we build an inspiral?

ital
Orbita GW radiation GW-driven inspiral

kinematics

Kinematics of an GW Radiation due to

orbiting small body an orbiting small body
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Inspiral of an orbiting small body

Orbital

, , GW radiation GW-driven inspiral
kinematics

Kinematics of an GW Radiation due to
orbiting small body an orbiting small body

Spinning body:
Spinning-particle

Spinning body:
MPD equations GW fluxes

Skoupy, Lukes-Gerakopoulos,
LVD & Hughes, 2023,
arXiv:2303.16798

Generic orbit, any spin orientation



Inspiral of an orbiting small body

Orbital
kinematics
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Kinematics of an

orbiting small body

GW radiation

GW Radiation due to
an orbiting small body

GW-driven inspiral

Spinning body:
MPD equations

Spinning body:
Spinning-particle
GW fluxes

Skoupy, Lukes-Gerakopoulos,
LVD & Hughes, 2023,

arXiv:2303.16798

Generic orbit, any spin orientation

Generic inspiral: work in
progress

Generic inspiral with any spin

orientation




How do we build an inspiral?

bital
.Or ' a. GW radiation GW-driven inspiral
kinematics
+
Kinematics of an GW Radiation due to
orbiting small body an orbiting small body
Spinning body: This work; LVD in
Spin-curvature = collaboration with Hughes,

coupling
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Hanselman, Becker & Lynch

Generic inspiral with arbitrary
spin orientation; but using
point-particle GW fluxes



Overview of our model

Motivation: To incorporate some spinning secondary effects into generic
Kerr waveforms.

* \We do not include the correction to the GW fluxes due to the spin of the
secondary (see the next talk by Viktor Skoupy).

* Therefore, our work is an intermediate step on the path towards
waveforms which fully incorporate all spinning secondary eftects.
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Osculating geodesic (OG) framework

Orbit evolves due to
Geodesic orbit of a

perturbing force Inspiral of small body
small body around a ) e 2 black hole
black hole
Parameterized by orbital Parameterized by orbital
elements {p, e, x} elements {p(t), e(t), x(t)}

We use an osculating
geodesic framework

Stitch together a sequence of Geodesic:
osculating orbits to construct :
an inspiral P.=0
- — YO (P
Sequence of g: = Yi (P)

osculating orbits
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Osculating geodesic (OG) framework

Orbit evolves due to
Geodesic orbit of a

perturbing force Inspiral of small body
ll
small bodly around a — into a black hole
black hole
Parameterized by orbital Parameterized by orbital
elements {p, e, x} elements {p(t), e(t), x(t)}

We use an osculating
geodesic framework

Stitch together a sequence of Post-geodesic:

osculating orbits to construct

an inspiral Pi — Fi(Fa 3)
Sequence of g =Y 50)(F) n ﬁ(ﬁ: é’)

osculating orbits
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Osculating geodesic (OG) framework

Geodesic orbit of a

small body around a
black hole

We use an osculating
geodesic framework

Stitch together a sequence of
osculating orbits to construct
an inspiral

Orbit evolves due to

perturbing force Inspiral of small body
—p into a black hole
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Eccentricity e
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Osculating geodesic (OG) framework

Geodesic orbit of a

small body around a
black hole

We use an osculating
geodesic framework

Stitch together a sequence of
osculating orbits to construct
an inspiral

Orbit evolves due to

perturbing force Inspiral of small body
—p into a black hole
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NI'T: Near-Identity Transformation

Notice all the short
timescale oscillations which
our integrator must resolve!

!

2000 10000 15000 We are only interested in
t/M the averaged behavior on
long timescales
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Dephasing between the spinning- and
non-spinning-body trajectory.

p() — IOMa eO — 02, XO — 07, a = O7M
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NI'T: Near-Identity Transformation

Original

NIT (averaged)

t/M

non-spinning-body trajectory.

Dephasing between the spinning- and

p() — IOMa eO — 02, XO — 07, a = O7M
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We use a generic NIT (Near-
Identity Transformation) to
isolate the long timescale
evolution (as in Philip Lynch’s
talk on Tuesday)

Pi—>}3i
q; = 4,

g; = YO(P) + f(P))

[Work in collaboration with Philip Lynch]



NI'T: Near-Identity Transformation

We use a generic NIT (Near-
Identity Transformation) to
isolate the long timescale
evolution (as in Philip Lynch’s
talk on Tuesday)

t/M % Allows a

speed up in computation

Original

NIT (averaged)
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Dephasing between the spinning- and % NIT averaged phases are the input

non-spinning-body trajectory. we use for

p() — IOMa eO — 02, XO — 07, ad = O7M
[Work in collaboration with Philip Lynch]
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Why use OG + NIT formulation for
spinning secondary effects?

e Will interface immediately with NIT set-up for selt-force (as described by
in talk by Philip Lynch); same parameterization and framework

e Another formulation of spinning-body trajectories; another independent
cross-check

* May be useful to consider contribution from conservative and dissipative
spinning-body sectors individually
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Equatorial waveform with

initial eccentricity of e = 0.5 W&Vef()l‘ms fOl‘ equatﬂrial Ol‘bitS
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non-spinning-body trajectory.
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Waveforms for generic orbits

Equatorial waveform with Generic waveform with

initial eccentricity of e = 0.5 initial eccentricity of e = 0.2
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Some caveats

* Not a fully self-consistent model; only includes some of the spinning
secondary effects. Everything is sufficiently modular that additional elements
can be included straightforwardly.

Missing post-adiabatic elements: the GW fluxes due to the dipole term in the
stress-energy tensor, first- and second- order selt-force.

* Dephasings due to secondary spin contributions and self-force contributions
could cancel each another in certain regions of parameter space

* Dephasings alone are not sufficient to determine detectability; need a full
Bayesian parameter estimation analysis

25



Conclusions and some open questions...

% We have computed fully generic spinning-body inspirals and waveforms with
arpitrary spin alignment (arXiv:2305.08919) — but there are missing elements

% Natural next steps are to include more of the missing elements: e.g., include
the GW backreaction due to the dipole term in the stress-energy tensor into our
framework. (Conduct a careful comparison with the calculations of Skoupy &
Lukes-Gerakopoulos.)

% Detectability of small-body spin for generic orbital configurations? Size of
dephasing is not sufficient to assess detectability, need to do full Bayesian
infererence study e.qg., with few (Fast EMRI waveforms)

% Carter-like constant evolution for spinning secondary?
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