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Introduction

• Discuss distributional sources to the Einstein field equations in the Lorenz gauge

• Well-defined second-order field equations using the Detweiler stress-energy tensor [SDU

& AP, 2101.11409]

• Show how to use the Detweiler stress-energy tensor in a practical way

• Derive a counter term that cancels divergence in the second-order source at the
worldline

• Demonstrate that counter term is equivalent to result obtained through Hadamard
finite part regularisation
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Detweiler stress-energy tensor: Highly regular gauges [SDU & AP, 2101.11409]

• Well-defined EFEs at second order

δGµν [h2] + δ2Gµν [h1, h1] = 8πT µν
2

where
T µν

2 = −m

2

∫
uµuν(gαβ − uαuβ)hR1

αβδ
4(x, z) dτ

• Weak divergence of metric perturbations means automatically true in highly regular
gauge

• Most singular parts of EFEs cancel

δ2Gµν [hS1, hS1] = −δGµν [hSS], ∀r
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Detweiler stress-energy tensor: Lorenz gauge [SDU & AP, 2101.11409]

• Not automatically true in other gauges

• True off worldline

δ2Gµν [hS1, hS1] = −δGµν [hSS], r > 0

as
δGµν [h2] + δ2Gµν [h1, h1] = 0, r > 0

• So define
δ2Gµν [hS1, hS1] := −δGµν [hSS], ∀r

• Motivated by highly regular gauge where this is automatically true
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Detweiler stress-energy tensor: Canonical definition [SDU & AP, 2101.11409]

• Only have local expansions for fields around γ

• Adopt Detweiler canonical definition

δ2Gµν [h1, h1] := lim
s→0

δ2Gµν
s [h1, h1]

where

δ2Gµν
s [h1, h1] := (−δGµν [hSS] + 2

δ2Gµν [hS1,hR1]︷ ︸︸ ︷
Qµν [hS1] +δ2Gµν [hR1, hR1])θ(s− r)

+ δ2Gµν [h1, h1]θ(r − s)

• Leads to a consistent result for T µν
2 in highly regular and Lorenz gauges
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Using canonical definition in source for Lorenz gauge

• How can we use this to solve for h2
µν?

δGµν [h2] + δ2Gµν [h1, h1] = 8πT µν
2

• After imposing Lorenz gauge conditions

Eµν [h̄2] = −16πT 2
µν + 2δ2Gµν [h1, h1]

• Want to extract delta content of δ2Gµν [h1, h1] to put in practical form
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Distributional analysis
• Adjoint of linear operator

ϕµνDµν [ψ] −D†
µν [ϕ]ψµν = ∇µK

µ
D

• Integral against test field∫
ϕµνDµν [ψ] dV :=

∫
D†

µν [ϕ]ψµν dV

• Using these and Detweiler canonical definition, we get∫
ϕµνδ2Gµν [h1, h1] dV = lim

s→0

[∫
ϕµν

(
−δGµν [hSS] + 2Qµν [hS1]

+ δ2Gµν [hR1, hR1]
)
θ(s− r) dV

+
∫

r>s
ϕµνδ2Gµν [h1, h1] dV

]
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“Singular times singular” term

• Einstein operator is self-adjoint, δG†
µν [h] = δGµν [h] [Wald, PRL, 1978], so∫

ϕµνδG
µν [hSS]θ(s− r) dV :=

∫
δGµν [θ(s− r)ϕ]hµν

SS dV

• Use distributional identities∫
δGµν [θ(s− r)ϕ]hµν

SS dV = lim
R→0

(∫
r>R

ϕµνδG
µν [hSS]θ(s− r) dV

−
∫

r=R
KδG

α [θ(s− r)ϕ, hSS] dSα
)

= − 4m2π

3s

∫
(7gµν − 2uµuµ)ϕµν dt
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Stress-energy counter term
• Write result from previous slide as stress-energy tensor∫

ϕµνT counter
µν dV := − 1

8π

∫
δGµν [θ(s− r)ϕ]hµν

SS dV

• As ϕµν is a test field,

T counter
µν = m2

6s

∫
(7gµν − 2uµuµ)δ4(x, z) dτ

• We can follow the same procedure for Qµν [hS1] to find

TQ
µν = m

3

∫
Uαβ

µνh
R1
αβδ

4(x, z) dτ

where Uαβ
µν is a function of the metric and 4-velocity (similar given in [2101.11409] but for

indices up)
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Final reformulation of the source
• By using canonical definition, we have

Eµν [h̄2] = −16πT 2
µν + 2δ2Gµν [h1, h1]

• Re-expressed as delta functions

Eµν [h̄2] = −16π(T 2
µν − TQ

µν) + 2 lim
s→0

{8πT counter
µν + θ(r − s)δ2Gµν [h1, h1]}

• Equation has solution (for some Green’s function Gµν
µ′ν′(x;x′))

h̄2
µν = − 16π

∫
Gµν

µ′ν′(T 2
µ′ν′ − TQ

µ′ν′) dV ′ + 2 lim
s→0

(∫ ∞

r′=s
Gµν

µ′ν′
δ2Gα′β′ [h1, h1] dV ′

+ 4πm2

3s

∫
γ
Gµν

µ′ν′(7gµ′ν′ − 2uµ′uν′) dτ
)
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Comparison with regularisation methods: Hadamard finite part

• Assign finite value to divergent integral – often used in PN e.g. [Blanchet & Faye,

gr-qc/0004008]

• For example, this integral does not converge:∫ 1

−1

1
r2 dr

• Introduce regularising factor (r/L)B where L has dimensions of length and B ∈ C
• Finite value for integral

FP
B=0

∫ 1

−1

(
r

L

)B 1
r2 dr = −2
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Rewriting the limit term

• Compare finite part regularisation of δ2Gµν [h1, h1] against limit term

h̄2
µν = − 16π

∫
Gµν

µ′ν′(T 2
µ′ν′ − TQ

µ′ν′) dV ′

+ 2 FP
B=0

∫ (r′

L

)B

Gµν
µ′ν′(x;x′)δ2Gµ′ν′ [h1, h1] dV ′

= − 16π
∫
Gµν

µ′ν′(T 2
µ′ν′ − TQ

µ′ν′) dV ′ + 2 lim
s→0

(∫ ∞

r′=s
Gµν

µ′ν′
δ2Gµ′ν′ [h1, h1] dV ′

+ FP
B=0

∫ s

r′=0

(
r′

L

)B

Gµν
µ′ν′

δ2Gµ′ν′ [h1, h1] dV ′
)
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Calculating the finite part

• Calculate remaining FP term

FP
B=0

∫ s

r′=0

(
r′

L

)B

Gµν
µ′ν′(x;x′)δ2Gµ′ν′ [h1, h1]r′2 dt′ dr′ dΩ′

= 4πm2

3s

∫
Gµν

µ′ν′(x; t′, 0)(7gµ′ν′ − 2uµ′uν′ + O(s2)) dt′

• Exactly the same counter term as before
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Calculating the finite part
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Conclusions and future work

• Reformulated second-order EFEs to use Detweiler stress-energy tensor to solve for
retarded field

Eµν [h̄2] = −16π(T 2
µν − TQ

µν) + 2δ2Gµν [h1, h1]

• Counter term cancels divergence when integrating over δ2Gµν [h1, h1]
• Demonstrated that counter term is the same as using Hadamard regularisation on

retarded integral of δ2Gµν [h1, h1]
• Future work:

• Compare with other regularisation schemes, e.g. dimensional regularisation
• Can we write this in a mode-decomposed form?
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