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Theoretical framework

·EGW = ∑
i=+,−

[ ·E(i)
grav + ·E(i)

scal] = ·Egrav + ·Escal
·Escal ∝ d2

EXTRA emission simply added to the gravitational one! 

only depends on the scalar charge d

Teukolsky formalism for the gravitational and scalar perturbations: 

S [g, φ, Ψ] = S0 [g, φ] + αSc [g, φ] + Sm [g, φ, Ψ]Vast class of theories:
AGNOSTIC APPROACH

Gμν = Tp
μν = 8πmp ∫

δ(4)(x − yp(λ))

−g

dyp
μ

dλ
dyp

ν

dλ dλ

□ φ = − 4π d mp ∫
δ(4)(x − yp(λ))

−g
dλ

Decoupled fields equations ! 

Leading order in :q



Energy emission trough gravitational and scalar waves 


Adiabatic orbital evolution         


Imprint on the gravitational waves: dephasing, faithfulness, … 


Parameter estimation: FIM, MCMC, …

·E = − ·EGW

EMRIs + scalar fields

GR + Scalar fields

d

OUTLINE : 



Dephasing: equatorial eccentric orbits 

 reducing  , the time it takes for the secondary to reach the plunge grows, leading to larger 
accumulated dephasings

ein

ra = 11M
d = 0.01

 for a given time of observation,  is larger for inspirals with higher ΔΨϕ ein

 after 3-4 months all the inspirals lead to a dephasing larger then the threshold !

  
  

M = 106M⊙
mp = 10 M⊙
a = 0.9M

Horizontal dashed line: threshold of phase resolution by LISA of  for Δψϕ = 0.1 SNR = 30

[S.B+: Phys.Rev.D 106 (2022) 4]

r(χ) =
p

1 + e cos χ

Ωr(e, p) =
2π
Tr

Ωϕ(e, p) =
Δϕ
Tr

ΔΨϕ = 2∫
Tobs

0
ΔΩϕdt



Dephasing: inclined circular orbits 

 Increasing , the time it takes for the secondary to reach the plunge grows, leading to 
larger accumulated dephasings

x0

 For a given time of observation,  is larger for inspirals with higher ΔΨϕ x0

 After 3-4 months all the inspirals lead to a dephasing larger then the threshold !

[M.Della Rocca, SB+, in preparation]
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a = 0.95M

r0 = 10M
d = 0.01
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• Red line: threshold under which the signals are significantly different -  for 


• After year  is always smaller than the threshold for scalar charges as small as  


• For the eccentric inspirals the distinguishability increases, leading to a smaller 

ℱ ≲ 0.988 SNR = 30

1 ℱ d = 0.01

ℱ

GW template: Faithfulness

⟨h1 |h2⟩ = 4ℜ∫
fmax

fmin

h̃1( f )h̃⋆
2 ( f )

Sn( f )
df

Estimate how much two signals differ:

LISA power spectral 
density  

Inner product:

Waveform quadrupolar approximation:

hTT
ij =

2
D (PiℓPjm −

1
2

PijPℓm) ··Iℓm

Iij = ∫ d3xTtt(t, xi)xixj = mpxixj



FIM: Fisher Information Matrix analysis 

• Inject parameters to generate the waveform ⃗θ = ( ln M, ln mp, χ, ln D, θs, ϕs, θ1, ϕ1, r0, Φ0, d)

  Γij = ⟨ ∂h
∂θi

∂h
∂θj ⟩

θ= ̂θ

Σ = Γ−1

• Fisher Information Matrix analysis

M, χ

• 


•

M/M⊙ = 106

χ = 0.9
mp

d

— Primary : 

— Secondary : 

• 


•

mp/M⊙ = 10

d = (0.05,0.3)

•  year of observation before the plunge 1

• Equatorial circular inspiral



FIM: Relative error for the scalar charge

[Nature Astron. 6 (2022) 4, 464-470 ]

LISA potentially able to measure scalar charges with % error !  

Top: relative error on the scalar charge 


Bottom:  interval around the true values of the scalar charge3 − σ



What about massive scalar fields? 



Ultra-light scalar fields: energy emission

Energy emission: 

•  


• 


•  

·Escal = d2 ·̄
Escal

μ̄s = μsM
χ = a /M = 0.9

The flux at infinity vanishes for ω < μs

The flux at the horizon is active during all the inspiral 

— For each  exist  such that (ℓ, m) rs
·E∞
scal(r > rs) = 0

The emitted GW flux drives the adiabatic orbital evolution 

( □ − μ2
s ) φ = − 4πdmp ∫

δ(4)(x − yp(λ))

−g
dλ

S = ∫ d4x
−g

16π (R −
1
2

∂μφ∂μφ −
1
2

μ2
s φ2) + αSc [g, φ] + Sm [g, φ, Ψ]



Massive scalar fields: faithfulness

  : between a GR 
template and one with massive 
scalar fields 

ℱ[h+
d=0, h+

d≠0]

  : between templates 
with massive/massless scalar fields
ℱ[h+

μs=0, h+
μs≠0]

    -  a = 0.9M d = 0.1

To eV : 

( μsM
0.75 ) ⋅ (

106M⊙

M ) 10−16 eV
[S.B +, PRL accepted]

• Shaded band: superradiance instability 
[ Brito+, Lect.Notes Phys. 971 (2020) pp.1-293]•  


•

χ = 0.9
M = 106M⊙



FIM: Fisher Information Matrix analysis 

• Inject parameters to generate the waveform ⃗θ = ( ln M, ln mp, χ, ln D, θs, ϕs, θ1, ϕ1, r0, Φ0, d, μ̄s)

  Γij = ⟨ ∂h
∂θi

∂h
∂θj ⟩

θ= ̂θ

Σ = Γ−1

• We considered just the dipole for the scalar emission (ℓ = 1)

• Fisher Information Matrix analysis

M, χ

• 


•

M/M⊙ = 106

χ = 0.9mp

d, μ̄s

— Primary : 

— Secondary : 

• 


• 


•

mp/M⊙ = 1.4, 4.6, 10, 15

d = 0.1
μ̄s = 0.018, 0.036

•  year of observation before the plunge 1

• The scalar flux at infinity is significant throughout the entire inspiral 



FIM: scalar charge and mass detectability

Credible intervals at  and  for the joint posterior distribution of , 68 % 90 % d μ̄s
Marginal distributions for , 


white area between shaded regions: of 

d μ̄s

90 % 𝒫

SIMULTANEOUS detection of 
BOTH the scalar charge and mass 

with single event observations! 



Bayesian analysis: Markov Chain Monte Carlo
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[L. Speri, S.B+, in preparation]

    90% upper bound on the probability distribution of the sGB coupling 
constant for different EMRIs, compared against constraints currently available, 

inferred by nearly symmetric binaries

CIRCULAR INSPIRAL & MASSLESS FIELD



• EMRIs in a vast class of modified theories of gravity + scalar fields


• The extra energy loss modifies the binary evolution and leaves an imprint in the emitted 
GW 


• The dephasing and the faithfulness show how scalar charges of  could be 
possibly detectable by LISA


• The Fisher analysis shows how LISA could be able to measure scalar charges with 
accuracy of the order of percent (massless) and to simultaneously detect both the scalar 
charge and mass of the new ultra-light scalar field (massive)

d ∼ 0.01

Conclusions

To look forward .. 

Thank you for attention 

Self force corrections  ….

Easy extensions to multiple fields and couplings 

stay tuned with Andrew Spiers talk! 



Back up 



S [g, φ, Ψ] = S0 [g, φ] + αSc [g, φ] + Sm [g, φ, Ψ]

1
2

∂μφ1∂νφ1 −
1
4

gμν (∂φ1)2 −
1
4

gμνμ2
s φ2

1Gμν =

( □ − μ2
s ) φ = −

16πα
−g

δSc

δφ
∼ ζ □ φ +16π∫ m′￼(φ)

δ(4)(x − yp(λ))

−g
dλ

m(φ0) = mp

m′￼(φ0) = −
d
4

mp

δS
δgμν

δS
δφ

 to be evaluated at 


In a reference frame centered on the particle :


Matching with the scalar field eq. outside the world tube: 

(tt)-stress energy tensor in the weak field limit: matter density: 

m, m′￼ φ0

ζ ≪ 1

−
16πα

−g
δSc

δgμν
∼ ζGμν +8π∫ m (φ)

δ(4)(x − yp(λ))

−g

dyα
p

dλ
dyβ

p

dλ
dλ

Sc ∼ M−nS0

Field equations

φ =
mp d

r̃
e−μsr̃ + O (

m2
p

r̃2
e−μsr̃)



Energy flux: eccentric orbits
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The scalar energy flux increases 
with the eccentricity 

The Rel. Diff. decreases with 
the increasing of eccentricity 

For a fixed : p

For a fixed : e
The Rel. Diff. decreases for smaller

, due to faster growth of  
and w.r.t. to the scalar sector
p ·Egrav·Lgrav

Rel. Diff. =
·E − ·Egrav

·Egrav
=

·Escal
·Egrav



Orbital Evolution

·E = − ·EGW

·p = (L,e
·E − E,e

·L)/H
H = E,pL,e − E,eL,p

The emitted GW flux drives the adiabatic orbital evolution 

Balance law

From the rate of change of the integrals , we obtain the time derivatives of (E, L) (p, e)

ΔΨi = 2∫
Tobs

0
ΔΩidt i = ϕ, r

ΔΩi = Ωd
i − Ωd=0

i

And of the phases  related to the frequencies


The extra emission accelerates the binary coalescence and affects the GW phase, 
causing a dephasing w.r.t the case 


Compute the dephasing

ψϕ,r

d = 0

·L = − ·LGW& 

·e = (E,p
·L − L,p

·E)/H

Ωϕ,r(e, p) =
d
dt

Ψϕ,r



Quadrupolar approximation hTT
ij =

2
D (PiℓPjm −

1
2

PijPℓm) ··Iℓm

Iij = ∫ d3xTtt(t, xi)xixj = mpxixj

Strain measured by the detector 

GW Signal 

LISA pattern functions 

h(t) = ∑
n

hn(t)

[L. Barack and C. Cutler, Phys. 
Rev. D 69 (2004) 082005]

F+ =
1 + cos2 θ

2
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

F× =
1 + cos2 θ

2
cos 2ϕ sin 2ψ + cos θ sin 2ϕ cos 2ψ

A+
n = − [1 + (L̂ ⋅ N̂ )2][an cos(2γ) − bn sin(2γ)] + [1 − (L̂ ⋅ N̂ )2]cn

A×
n = 2(L̂ ⋅ N̂ )[bn cos(2γ) + an sin(2γ)]

an = − n 𝒜 [Jn−2(ne) − 2eJn−1(ne) + (2/n)Jn(ne) + 2eJn+1(ne) − Jn+2(ne)]cos[nΦ(t)]

bn = − n 𝒜 (1 − e2)1/2[Jn−2(ne) − 2Jn(ne) + Jn+2(ne)]sin[nΦ(t)]

cn = 2 𝒜 Jn(ne) cos[nΦ(t)]

(2πνM )2/3mp /D

2πν = dΦ/dt

cos γ = cos ΨR

Φ = Ψϕ

Amplitudes

{

hn(t) =
3

2 [F+(t)A+
n (t) + F×(t)A×

n (t)]



• Grey line: threshold under which the signals are significantly different and don’t 
provide a faithful description of one another


• After one year the faithfulness is always smaller than the threshold set by , 
even for scalar charges as small as  

SNR = 30
d = 0.01

Faithfulness

Estimate of how much two signals differ



• Measurement of the scalar charge with a relative error smaller than , with a probability 
distribution that does not have any support on  at more than -

10 %
d = 0 3 σ

• Corner plot of the probability 
distribution of , after  
months of observation, with 

 and 


• Vertical lines: -  distribution for 
each waveform parameters 


• Colored contours:  and 
probability confidence intervals

(M, μ, χ, d) 12

d = 0.05 SNR = 150

1 σ

68 % 95 %

Probability distribution

• Scalar charge  highly correlated with  and anti-correlated with  and d μ M χ



From the scalar charge to the coupling constant ! 

For theories with hairy BHs, it is possible to find a relation d(α)

Example of theories: scalar Gauss-Bonnet gravity (sGB)

[α] = (mass)n
αSc =

α
4 ∫ d4x

−g

16π
f (φ) 𝒢

n=2

𝒢 = R2 − 4RμνRμν + RμναβRμναβGauss-Bonnet invariant

f(φ) = eφ

Dimensionless coupling constant β ≡ α/m2
p

d = 2β +
73
30

β2 + O(β3)

f(φ) = φ d = 2β +
73
60

β3 + O(β4)

bounds on  can be translated to bounds on d β



α /km = 4.67+0.73
−0.77 α /km = 9.312+0.092

−0.092

• Probability density function of  obtained from the joint probability distribution of  
and  obtained from the Fisher analysis (SNR=150) 


• Vertical lines: confidence interval


• Even for , the probability density functions do not have support with 

α μ
d

90 %
d = 0.05 α = 0

Coupling constant 

Shift-symmetric Gauss Bonnet gravity 

α ≃ 2dμ2 −
73
240

d3μ2

Sc =
α
4 ∫ d4x

−g

16π
f(φ)𝒢

f(φ) = φ

For hairy BHs, if the little body is a BH, we find a relation d(α)


