
Asymptotic gravitational-wave fluxes from a spinning test body on
generic orbits around a Kerr black hole

Viktor Skoupý
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Introduction

Motivation: contribution of the secondary spin to the 1PA term

Flux-driven inspirals: only asymptotic GW fluxes needed (?)

Linear order in the secondary spin

We used Teukolsky equation to calculate GW fluxes from off-equatorial orbits of spinning
particle in the Kerr spacetime in frequency domain

We compared the result with time-domain fluxes
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Spinning particle in the Kerr spacetime

Stress-energy tensor Tµν =
∫
dτ

(
P(µuν) δ4√

−g
−∇α

(
Sα(µuν) δ4√

−g

))
Linearized Mathisson-Papapetrou-Dixon equations

µ
D2zµ

dτ2
= −1

2
Rµ

νρσ
dzν

dτ
Sρσ DSµν

dτ
= 0,

Tulczyjew-Dixon SSC SµνPν = 0

Constants of motion:

µ =
√

−PµPµ

S =
√

SµνSµν/2 = σµM, σ ≤ q ≪ 1

E = −ξµ(t)Pµ + ξ
(t)
µ;νSµν/2

Jz = ξµ(ϕ)Pµ − ξ
(ϕ)
µ;νSµν/2

CY = σ∥
√
K = YµνP

µSν/(µM)
KR = KµνP

µPν − 2PµSρσ(Yµρ;κY
κ
σ + Yρσ;κY

κ
µ)
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Parallel transport

Spin vector Sµ = −1/2ϵµνκλPνSκλ/µ parallel transported along a geodesic
Solution in Marck tetrad (Marck [1983], van de Meent [2020])

Sµ = µM
(
σ⊥(cosψpe

µ
1 + sinψpe

µ
2 ) + σ∥e

µ
3

)
ψp = Υsλ+∆ψr (λ) + ∆ψz(λ)

eµ0 = uµ = −unl
µ − uln

µ + um̄m
µ + umm̄

µ

eµ1 = −rΞ(r , z)K− 1
2 (unl

µ − uln
µ)− iazΞ−1(r , z)K− 1

2 (um̄m
µ − umm̄

µ)

eµ2 = Ξ(r , z)(−unl
µ − uln

µ) + Ξ−1(r , z)(um̄m
µ + umm̄

µ)

eµ3 = azK− 1
2 (unl

µ − uln
µ)− irK− 1

2 (um̄m
µ − umm̄

µ)

Components of the spin tensor:

Sln = −σ∥
r(K − a2z2)√

KΣ
, Snm = σ∥

r − iaz√
K

umun, . . .
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Solution in frequency domain

Parametrization of the orbit (Drummond and Hughes [2022a,b]):

r =
p

1 + e cos(Υrλ+ δχ̂r (λ) + δχS
r (λ))

+ rS(λ)

z = cos θ = sin I cos
(
Υzλ+ δχ̂z(λ) + δχS

z (λ)
)
+ zS(λ)

ut = −Ê + uSt (λ)

uϕ = L̂z + uSϕ (λ)

Expansion in Fourier series f (λ) =
∑

nk fnkje
−inΥrλ−ikΥzλ−ijΥsλ

Phases wµ = Υµλ can be used instead of λ

σ⊥ part fully oscillating ⇒ fnkj for j = ±1 proportional to σ⊥, for j = 0 proportional to σ∥
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Fourier coefficients

The MPD equations and
normalization of uµ linearized in
σ

System of linear equations for
the Fourier coefficients obtained
from Fourier series

M · v − c = 0

Overconstrained system solved
with least squares method
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Teukolsky equation

Weyl scalar ψ4 = −Cαβγδn
αm̄βnγm̄δ

Teukolsky equation −2O−2ψ = 4πΣT

Teukolsky equation in time domain: the Teukode (Harms et al. [2014])

Horizon-penetrating hyperboloidal coordinates
(2+1)-D PDE
Source term of spinning particle

Teukolsky equation in frequency domain

ψ4 = (r − ia cos θ)−4
∑
l ,m

∫
dω ψlmω(r)−2S

aω
lm (θ)e−iωt+imφ

Radial equation Dlmωψlmω(r) = Tlmω

Angular equation for spin-weighted spheroidal harmonics
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Radial Teukolsky equation

Asymptotic behavior of the radial function

ψlmω(r) =

{
C+
lmωr

3e iωr as r → ∞
C−
lmω∆e−ikH r

∗
as r → r+

Amplitudes found using Green function method

C±
lmn =

1

W

∫ ∞

r+

R∓
lmn(r)Tlmn(r)

∆(r)
dr

Source term constructed from the derivatives of the stress-energy tensor Tnn, Tnm̄, Tm̄m̄

√
−gTab =

∫
dτ

((
uaub + Scdu(bγa)dc + Sc

(aγb)dcv
d
)
δ4 − ∂ρ

(
Sρ

(aub)δ
4
))

Solution can be written as C±
lmω =

∫
dτΣ−1I±lmω(τ)e

iωt(τ)−imϕ(τ)
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Partial amplitudes

Discrete spectrum of frequencies ωmnkj = mΩϕ + nΩr + kΩz + jΩs

C±
lmnkj =

1

(2π)2Γ

∫
dwrdwzdws I

±
lmnkj(wr ,wz ,ws)e

iω∆t(wr ,wz ,ws)−im∆ϕ(wr ,wz ,ws)+inwr+ikwz+ijws

Numerically integrated with the midpoint rule, homogeneous solution from the BHPT

Waveform

h = −2

r

∑
lmnkj

C+
lmnkj

ω2
mnkj

S
aωmnkj

lm (θ)e−iωmnkj t+imϕ

Energy and angular momentum fluxes

FE =
∑
lmnkj

∣∣∣C+
lmnkj

∣∣∣+ αlmnkj

∣∣∣C−
lmnkj

∣∣∣
4πω2

mnkj

, FJz =
∑
lmnkj

m

∣∣∣C+
lmnkj

∣∣∣+ αlmnkj

∣∣∣C−
lmnkj

∣∣∣
4πω3

mnkj
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Linearization of the fluxes

Trajectory calculated up to linear order in σ

Amplitudes and fluxes valid up to linear order
as well

Numerical linearization with 4th order finite
difference formula

f S =
1
12 f (−2σ)− 2

3 f (−σ) +
2
3 f (σ)−

1
12 f (2σ)

σ

Amplitudes for j = ±1 proportional to σ⊥

Fluxes for j = ±1 proportional to σ2⊥
In linear order the fluxes are independent of σ⊥
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Comparison with time domain results

E , Jz , r , θ, u
r , S r , Sθ calculated in

frequency domain

Other components calculated from the
constraints

Nonlinearized MPD equations solved
numerically

Time domain fluxes from this trajectory

Averaging of the generic fluxes: successive
moving averages with periods 2π/Ωr ,
2π/Ωz , 2π/(nΩr + kΩz)
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Relative difference between the energy flux and
the average value
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Comparison with time domain results

total

0 10 20 30 40 50 60

0.002

0.004

0.006

0.008

Nearly spherical orbits with a = 0.9M, p = 10

p e I/◦ m FE
S,m ∆FE

S,m

10 0.1 15 2 −2.8259× 10−6 1× 10−3

12 0.2 30 1 −1.1954× 10−7 2× 10−5

12 0.2 30 2 −1.0488× 10−6 1× 10−3

12 0.2 30 3 −1.4210× 10−7 3× 10−3

12 0.2 60 2 −8.0550× 10−7 5× 10−4

15 0.5 15 2 −4.2936× 10−7 2× 10−3

Generic orbits
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Summary

Secondary spin is needed for the post-adiabatic term

We calculated the fluxes of energy and angular momentum from generic orbits of spinning
particles

We compared the frequency domain and time domain solutions

Only parallel component of the secondary spin is relevant

For the inspirals evolution of the Carter-like constant is needed

Thank you
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