2nd-order Gravitational Self-Force in Schwarzschild: Mode Decomposition of the 1st-Order Puncture Jonathan Thornburg

Department of Astronomy and Center for Spacetime Symmetries Indiana University

Work done as part of 2SF group:

2nd-order GSF in Schwarzschild: the Big Picture

Puncture scheme near the particle:

1st order puncture:
${ }^{(1)} h_{a b}^{(\text {puncture })}$

Terminology:

- Penrose abstract-index notation
- $a b$ are tensor indices
- ${ }^{(n)} h_{a b}$ is the n th-order metric perturbation

2nd-order GSF in Schwarzschild: the Big Picture

Puncture scheme near the particle, with mode-sum decomposition:

1st order puncture:
${ }^{(1)} h_{a b}^{(\text {puncture })}$
compute mode decomposition
of 1st-order puncture
Barack-Lousto-Sago modes of the 1st-order puncture: $\left.{ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\mathrm{I} \ell m}$

Terminology:

- Penrose abstract-index notation
- $a b$ are tensor indices
- ${ }^{(n)} h_{a b}$ is the n th-order metric perturbation
- I labels the Barack-Lousto-Sago mode
- ℓm label the spherical harmonic

2nd-order GSF in Schwarzschild: the Big Picture

Puncture scheme near the particle, with mode-sum decomposition:

1st order puncture:
${ }^{(1)} h_{a b}^{\text {(puncture) }}$
compute mode decomposition of 1 st-order puncture

Barack-Lousto-Sago modes of the 1 st-order puncture: $\left.{ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\text {I } \ell m}$

compute 1st-order metric

 perturbation (mode-by-mode)Barack-Lousto-Sago modes of the 1st-order metric perturbation: $\left({ }^{(1)} h_{a b}\right)^{\mathrm{I} \ell m}$

Terminology:

- Penrose abstract-index notation
- $a b$ are tensor indices
- ${ }^{(n)} h_{a b}$ is the n th-order metric perturbation
- I labels the Barack-Lousto-Sago mode
- ℓm label the spherical harmonic

2nd-order GSF in Schwarzschild: the Big Picture

Puncture scheme near the particle, with mode-sum decomposition:

1st order puncture:
${ }^{(1)} h_{a b}^{\text {(puncture) }}$
compute mode decomposition of 1 st-order puncture

Barack-Lousto-Sago modes of the 1 st-order puncture: $\left.{ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\mathrm{I} \ell m}$
$\left\lvert\, \begin{aligned} & \text { compute 1st-order metric } \\ & \text { perturbation (mode-by-mode) }\end{aligned}\right.$
Barack-Lousto-Sago modes of the 1st-order metric perturbation: $\left({ }^{(1)} h_{a b}\right)^{\mathrm{I} \ell m}$

Terminology:

- Penrose abstract-index notation
- $a b$ are tensor indices
- ${ }^{(n)} h_{a b}$ is the n th-order metric perturbation
- I labels the Barack-Lousto-Sago mode
- ℓm label the spherical harmonic
compute 1st-order metric
perturbation (mode-by-mode)

2nd-order GSF in Schwarzschild: the Big Picture

Puncture scheme near the particle, with mode-sum decomposition:

1st order puncture:
${ }^{(1)} h_{a b}^{\text {(puncture) }}$

- $a b$ are tensor indices
compute mode decomposition ${ }^{(n)} h_{a b}$ is the n th-order of 1st-order puncture

Barack-Lousto-Sago modes of the 1st-order puncture: $\left.{ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\text {I } \ell m}$

Barack-Lousto-Sago modes of the 1st-order metric perturbation: $\left({ }^{(1)} h_{a b}\right)^{I \ell m}$

Terminology:

- Penrose abstract-index notation metric perturbation
- I labels the Barack-Lousto-Sago mode
- ℓm label the spherical harmonic

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{(\text {puncture })} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{\text {(puncture })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{(\text {puncture })} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

The problem is doing the integrals.

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{(\text {puncture })} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

The problem is doing the integrals.
For technical reasons, we switch from the usual polar spherical coordinates (θ, ϕ) to (time-dependent) rotated coordinates (α, β) chosen so that the particle's instantaneous position is at the rotated north pole $\alpha=0$.

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{(\text {puncture })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{(\text {puncture })} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

The problem is doing the integrals.
For technical reasons, we switch from the usual polar spherical coordinates (θ, ϕ) to (time-dependent) rotated coordinates (α, β) chosen so that the particle's instantaneous position is at the rotated north pole $\alpha=0$.
The α integral $\left(\int_{0}^{\pi} d \alpha\right)$ is easy to do analytically.

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{\text {(puncture) })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{(\text {puncture })} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

The problem is doing the integrals.
For technical reasons, we switch from the usual polar spherical coordinates (θ, ϕ) to (time-dependent) rotated coordinates (α, β) chosen so that the particle's instantaneous position is at the rotated north pole $\alpha=0$.
The α integral $\left(\int_{0}^{\pi} d \alpha\right)$ is easy to do analytically.
The β integral $\left(\int_{0}^{2 \pi} d \beta\right)$ is harder:

- Compute it numerically \Rightarrow straightforward but slow

Mode decomposition of the 1st-order puncture

Conceptually, computing the mode decomposition is easy: the Barack-Lousto-Sago modes $Y_{a b}^{\mathrm{I} \ell m}$ are orthogonal, so

$$
\left({ }^{(1)} h_{a b}^{\text {(puncture) })}\right)^{\mathrm{I} \ell m}=\int{ }^{(1)} h_{a b}^{\text {(puncture) }} Y_{a b}^{\mathrm{I} \ell m} d \Omega \quad \text { for each I, } \ell, m
$$

The problem is doing the integrals.
For technical reasons, we switch from the usual polar spherical coordinates (θ, ϕ) to (time-dependent) rotated coordinates (α, β) chosen so that the particle's instantaneous position is at the rotated north pole $\alpha=0$.
The α integral $\left(\int_{0}^{\pi} d \alpha\right)$ is easy to do analytically.
The β integral $\left(\int_{0}^{2 \pi} d \beta\right)$ is harder:

- Compute it numerically \Rightarrow straightforward but slow
- Compute it analytically \Rightarrow this talk

How many β integrals are there?

Each " β integral" is actually a set of integrals, one for each Barack-Lousto-Sago tensor mode and (ℓ, m):

- there are 10 Barack-Lousto-Sago tensor modes ($1 \leq \mathrm{I} \leq 10$)

How many β integrals are there?

Each " β integral" is actually a set of integrals, one for each Barack-Lousto-Sago tensor mode and (ℓ, m) :

- there are 10 Barack-Lousto-Sago tensor modes ($1 \leq \mathrm{I} \leq 10$)
- we typically compute for (ℓ, m) in the range $0 \leq \ell \lesssim 50,0 \leq m \lesssim 10$
- integrals vanish by symmetry for about $\frac{1}{2}$ of (ℓ, m)
\Rightarrow There are about 2500 individual integrals in each " β integral" set.

How many β integrals are there?

Each " β integral" is actually a set of integrals, one for each Barack-Lousto-Sago tensor mode and (ℓ, m) :

- there are 10 Barack-Lousto-Sago tensor modes ($1 \leq \mathrm{I} \leq 10$)
- we typically compute for (ℓ, m) in the range $0 \leq \ell \lesssim 50,0 \leq m \lesssim 10$
- integrals vanish by symmetry for about $\frac{1}{2}$ of (ℓ, m)
\Rightarrow There are about 2500 individual integrals in each " β integral" set.
Each β integral depends on 2 parameters:

$$
\begin{aligned}
r_{0} & =\text { particle orbit radius (assume circular orbit for now) } \\
\Delta r & =r \text { of field (evaluation) point }-r_{0}
\end{aligned}
$$

How many β integrals are there?

Each " β integral" is actually a set of integrals, one for each Barack-Lousto-Sago tensor mode and (ℓ, m) :

- there are 10 Barack-Lousto-Sago tensor modes ($1 \leq \mathrm{I} \leq 10$)
- we typically compute for (ℓ, m) in the range $0 \leq \ell \lesssim 50,0 \leq m \lesssim 10$
- integrals vanish by symmetry for about $\frac{1}{2}$ of (ℓ, m)
\Rightarrow There are about 2500 individual integrals in each " β integral" set.
Each β integral depends on 2 parameters:

$$
\begin{aligned}
r_{0} & =\text { particle orbit radius (assume circular orbit for now) } \\
\Delta r & =r \text { of field (evaluation) point }-r_{0}
\end{aligned}
$$

We want to compute the 2nd-order self-force for at least 10-100 r_{0} values.

How many β integrals are there?

Each " β integral" is actually a set of integrals, one for each Barack-Lousto-Sago tensor mode and (ℓ, m) :

- there are 10 Barack-Lousto-Sago tensor modes $(1 \leq \mathrm{I} \leq 10)$
- we typically compute for (ℓ, m) in the range $0 \leq \ell \lesssim 50,0 \leq m \lesssim 10$
- integrals vanish by symmetry for about $\frac{1}{2}$ of (ℓ, m)
\Rightarrow There are about 2500 individual integrals in each " β integral" set.
Each β integral depends on 2 parameters:

$$
\begin{aligned}
r_{0} & =\text { particle orbit radius (assume circular orbit for now) } \\
\Delta r & =r \text { of field (evaluation) point }-r_{0}
\end{aligned}
$$

We want to compute the 2nd-order self-force for at least 10-100 r_{0} values.
Each self-force computation requires numerically evaluating the " β integral" set on a grid of 100-1000 Δr values.
\Rightarrow Need $10^{3}-10^{5}$ numerical evaluations of each of the ~ 2500 individual integrals

Typical form of an individual integrand

For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is:

$$
\begin{aligned}
I_{1,00}= & \frac{P_{3}\left(\sin ^{2} \beta\right) P_{6}^{(1)}\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)}{\left(r_{0}-2 M-M \sin ^{2} \beta\right)^{5 / 2}} \\
& \times\left[P_{6}^{(2)}\left(\frac{1}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)\left(\frac{K_{1}}{\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)^{3 / 2}}+\left(K_{2}+\frac{K_{3}}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)^{3 / 2}\right)\right.
\end{aligned}
$$

where each K_{i} is a "constant" and each P_{k} or $P_{k}^{(i)}$ is a polynomial of degree k. The "constants" K_{i} and the polynomial coefficients all depend on the parameters r_{0}, and Δr.

Typical form of an individual integrand

For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is:

$$
\begin{aligned}
I_{1,00}= & \frac{P_{3}\left(\sin ^{2} \beta\right) P_{6}^{(1)}\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)}{\left(r_{0}-2 M-M \sin ^{2} \beta\right)^{5 / 2}} \\
& \times\left[P_{6}^{(2)}\left(\frac{1}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)\left(\frac{K_{1}}{\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)^{3 / 2}}+\left(K_{2}+\frac{K_{3}}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)^{3 / 2}\right)+7 \text { more terms }\right]
\end{aligned}
$$

where each K_{i} is a "constant" and each P_{k} or $P_{k}^{(i)}$ is a polynomial of degree k. The "constants" K_{i} and the polynomial coefficients all depend on the parameters r_{0}, and Δr.

Typical form of an individual integrand

For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is:

$$
\begin{aligned}
I_{1,00}= & \frac{P_{3}\left(\sin ^{2} \beta\right) P_{6}^{(1)}\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)}{\left(r_{0}-2 M-M \sin ^{2} \beta\right)^{5 / 2}} \\
& \times\left[P_{6}^{(2)}\left(\frac{1}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)\left(\frac{K_{1}}{\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)^{3 / 2}}+\left(K_{2}+\frac{K_{3}}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)^{3 / 2}\right)+7 \text { more terms }\right]
\end{aligned}
$$

+4 more terms
where each K_{i} is a "constant" and each P_{k} or $P_{k}^{(i)}$ is a polynomial of degree k. The "constants" K_{i} and the polynomial coefficients all depend on the parameters r_{0}, and Δr.

Typical form of an individual integrand

 For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is:$$
\begin{aligned}
I_{1,00}= & \frac{P_{3}\left(\sin ^{2} \beta\right) P_{6}^{(1)}\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)}{\left(r_{0}-2 M-M \sin ^{2} \beta\right)^{5 / 2}} \\
& \times\left[P_{6}^{(2)}\left(\frac{1}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)\left(\frac{K_{1}}{\left(1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}\right)^{3 / 2}}+\left(K_{2}+\frac{K_{3}}{1-\frac{M \sin ^{2} \beta}{r_{0}-2 M}}\right)^{3 / 2}\right)+7 \text { more terms }\right]
\end{aligned}
$$

+4 more terms
where each K_{i} is a "constant" and each P_{k} or $P_{k}^{(i)}$ is a polynomial of degree k. The "constants" K_{i} and the polynomial coefficients all depend on the parameters r_{0}, and Δr.

This is the simplest of the integrands; the integrands rapidly become more complicated with increasing ℓ and/or m.

Overall strategy for doing the β integrals

None of the symbolic algebra systems I tried (Mathematica, Mathematica with the RUBI rules-based-integration package, Maple, Sage) could do the $I=1$, $\ell=0, m=0$ integral directly.

Overall strategy for doing the β integrals

None of the symbolic algebra systems I tried (Mathematica, Mathematica with the RUBI rules-based-integration package, Maple, Sage) could do the $I=1$, $\ell=0, m=0$ integral directly.

Instead, use a divide-and-conquer strategy:

- "flatten" the integrand into a single linear combination $K+\sum_{k} c_{k} X_{k}$, where the coefficients K and $\left\{c_{k}\right\}$ depend on r_{0} and Δr, but not on β :

Overall strategy for doing the β integrals

None of the symbolic algebra systems I tried (Mathematica, Mathematica with the RUBI rules-based-integration package, Maple, Sage) could do the $I=1$, $\ell=0, m=0$ integral directly.
Instead, use a divide-and-conquer strategy:

- "flatten" the integrand into a single linear combination $K+\sum_{k} c_{k} X_{k}$, where the coefficients K and $\left\{c_{k}\right\}$ depend on r_{0} and Δr, but not on β :
- expand product-of-sums into top-level sum
- merge nested sums into top-level sum
- move factors that don't depend on β into coefficients $\left\{c_{k}\right\}$
- do this recursively throughout the integrand's expression structure

Overall strategy for doing the β integrals

None of the symbolic algebra systems I tried (Mathematica, Mathematica with the RUBI rules-based-integration package, Maple, Sage) could do the $I=1$, $\ell=0, m=0$ integral directly.
Instead, use a divide-and-conquer strategy:

- "flatten" the integrand into a single linear combination $K+\sum_{k} c_{k} X_{k}$, where the coefficients K and $\left\{c_{k}\right\}$ depend on r_{0} and Δr, but not on β :
- expand product-of-sums into top-level sum
- merge nested sums into top-level sum
- move factors that don't depend on β into coefficients $\left\{c_{k}\right\}$
- do this recursively throughout the integrand's expression structure
- integrate each X_{k}
- terminology: X_{k} is a "component"

Overall strategy for doing the β integrals

None of the symbolic algebra systems I tried (Mathematica, Mathematica with the RUBI rules-based-integration package, Maple, Sage) could do the $I=1$, $\ell=0, m=0$ integral directly.
Instead, use a divide-and-conquer strategy:

- "flatten" the integrand into a single linear combination $K+\sum_{k} c_{k} X_{k}$, where the coefficients K and $\left\{c_{k}\right\}$ depend on r_{0} and Δr, but not on β :
- expand product-of-sums into top-level sum
- merge nested sums into top-level sum
- move factors that don't depend on β into coefficients $\left\{c_{k}\right\}$
- do this recursively throughout the integrand's expression structure
- integrate each X_{k}
- terminology: X_{k} is a "component"
- assemble the final result from K, c_{k}, and the X_{k} integrals

Example of flattening into a linear combination

For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is a linear combination of 251 components. Some examples:

$$
\begin{aligned}
& X_{1}=\frac{1}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{4}} \\
& X_{10}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2}}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{7}} \\
& X_{100}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2} \sin ^{6} \beta}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{10}} \\
& X_{200}=\frac{1}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{8}\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2}} \\
& X_{251}=\frac{\sin ^{6} \beta}{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{1 / 2}\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{6}}
\end{aligned}
$$

Example of flattening into a linear combination

For the $\mathrm{I}=1$ Barack-Lousto-Sago mode, the $\ell=0, m=0$ integrand is a linear combination of 251 components. Some examples:

$$
\begin{aligned}
& X_{1}=\frac{1}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{4}} \\
& X_{10}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2}}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{7}} \\
& X_{100}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2} \sin ^{6} \beta}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{10}} \\
& X_{200}=\frac{1}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{8}\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{3 / 2}} \\
& X_{251}=\frac{\sin ^{6} \beta}{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{1 / 2}\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{6}}
\end{aligned}
$$

Substituting $x=\sin \beta$ converts each of our component integrals $\int_{0}^{2 \pi} X_{k} d \beta$ into an elliptic integral.

Elliptic integrals

Formally, an elliptic integral is an integral

$$
\int_{a}^{b} R\left(x, \sqrt{P_{3 \mid 4}(x)}\right) d x
$$

where R is a rational function and $P_{3 \mid 4}$ is a polynomial of degree 3 or 4 .

Elliptic integrals

Formally, an elliptic integral is an integral

$$
\int_{a}^{b} R\left(x, \sqrt{P_{3 \mid 4}(x)}\right) d x
$$

where R is a rational function and $P_{3 \mid 4}$ is a polynomial of degree 3 or 4 .

- any elliptic integral can be written in terms of the 3 Legendre elliptic integrals E, K, and Π
- numerical computation of E, K, and Π is (can be) very efficient

Elliptic integrals

Formally, an elliptic integral is an integral

$$
\int_{a}^{b} R\left(x, \sqrt{P_{3 \mid 4}(x)}\right) d x
$$

where R is a rational function and $P_{3 \mid 4}$ is a polynomial of degree 3 or 4 .

- any elliptic integral can be written in terms of the 3 Legendre elliptic integrals E, K, and Π
- numerical computation of E, K, and Π is (can be) very efficient
- but the (symbolic) reduction of an arbitrary elliptic integral to Legendre form can be very complicated

Elliptic integrals

Formally, an elliptic integral is an integral

$$
\int_{a}^{b} R\left(x, \sqrt{P_{3 \mid 4}(x)}\right) d x
$$

where R is a rational function and $P_{3 \mid 4}$ is a polynomial of degree 3 or 4 .

- any elliptic integral can be written in terms of the 3 Legendre elliptic integrals E, K, and Π
- numerical computation of E, K, and Π is (can be) very efficient
- but the (symbolic) reduction of an arbitrary elliptic integral to Legendre form can be very complicated
- Maple has excellent code built-in to do this reduction (better than Mathematica or Mathematica/RUBI; alas Sage is very poor at this) \Rightarrow do the elliptic integrals in Maple

Counting the $\boldsymbol{\beta}$ integrals for multiple (ℓ, m)

How many elliptic integrals do we need to do?
For $I=1, \ell \in\{0,2,4, \ldots, 48\}, m=0$, we have:
$\ell \quad$ number of components X_{k}
0251

Counting the $\boldsymbol{\beta}$ integrals for multiple (ℓ, m)

How many elliptic integrals do we need to do?
For $I=1, \ell \in\{0,2,4, \ldots, 48\}, m=0$, we have:
$\ell \quad$ number of components X_{k}

0	251
2	367
4	471
8	679
16	1095
24	1511
36	2135
48	2759

Counting the $\boldsymbol{\beta}$ integrals for multiple (ℓ, m)

How many elliptic integrals do we need to do?
For $I=1, \ell \in\{0,2,4, \ldots, 48\}, m=0$, we have:
$\ell \quad$ number of components X_{k}

0	251
2	367
4	471
8	679
16	1095
24	1511
36	2135
48	2759

In total, to do all of $\ell \in\{0,2,4, \ldots, 48\}$ (again just for $I=1, m=0$) requires 37,763 elliptic integrals.

Counting the $\boldsymbol{\beta}$ integrals for multiple (ℓ, m)

How many elliptic integrals do we need to do?
For $I=1, \ell \in\{0,2,4, \ldots, 48\}, m=0$, we have:

ℓ	number of components X_{k}		Number of components X_{k} for each ell ($\mathrm{l}=1, \mathrm{emm}=0$)				
	total	unique to this ℓ	3000	- number of components			
0	251	251	\times	+ number of components	to th		
2	367	337	$\stackrel{\text { ¢ }}{\text { ¢ }}$				
4	471	432					
8	679	618	$\stackrel{8}{\square}$				
16	1095	128	- 1000				
24	1511	158		$\cdots 4^{+}$			
36	2135	163	0	++*++++	+ +	+ +	
48	2759	224		1020	30	40	50

In total, to do all of $\ell \in\{0,2,4, \ldots, 48\}$ (again just for $I=1, m=0$) requires 37,763 elliptic integrals.

Fortunately, many integrands are common to multiple ℓ; for this same set of ℓ we "only" need to integrate 4518 unique integrands X_{k}.

Cost of computing β integrals for multiple (ℓ, m)

Test computation:
$I=1, \ell \in\{0,2,4,6,8,10,12,16,20\}, m=0$
(each ℓ computed independently; duplicate integrals not removed)
$\Rightarrow 4960 \int_{0}^{2 \pi} X_{k} d \beta$ integrals

Cost of computing $\boldsymbol{\beta}$ integrals for multiple (ℓ, m)

Test computation:

$$
\begin{aligned}
& I=1, \ell \in\{0,2,4,6,8,10,12,16,20\}, m=0 \\
& \text { (each } \ell \text { computed independently; duplicate integrals not removed) } \\
& \Rightarrow 4960 \int_{0}^{2 \pi} X_{k} d \beta \text { integrals }
\end{aligned}
$$

The CPU time per $\int_{0}^{2 \pi} X_{k} d \beta$ integral has a very wide distribution.

CPU time per elliptic integral (Intel Core i7-8650 @ 1.9 GHz)

Cost of computing β integrals for multiple (ℓ, m)

Test computation:

$$
\begin{aligned}
& I=1, \ell \in\{0,2,4,6,8,10,12,16,20\}, m=0 \\
& \text { (each } \ell \text { computed independently; duplicate integrals not removed) } \\
& \Rightarrow 4960 \int_{0}^{2 \pi} X_{k} d \beta \text { integrals }
\end{aligned}
$$

The CPU time per $\int_{0}^{2 \pi} X_{k} d \beta$ integral has a very wide distribution.

The median CPU time is about 10 seconds per integral. But, some of the integrals are very expensive and take a lot of memory. The maximum for this set is 6300 seconds.

CPU time per elliptic integral (Intel Core i7-8650 @ 1.9 GHz)

Cost of computing β integrals for multiple (ℓ, m)

Test computation:

$$
\begin{aligned}
& I=1, \ell \in\{0,2,4,6,8,10,12,16,20\}, m=0 \\
& \text { (each } \ell \text { computed independently; duplicate integrals not removed) } \\
& \Rightarrow 4960 \int_{0}^{2 \pi} X_{k} d \beta \text { integrals }
\end{aligned}
$$

The CPU time per $\int_{0}^{2 \pi} X_{k} d \beta$ integral has a very wide distribution.

The median CPU time is about 10 seconds per integral. But, some of the integrals are very expensive and take a lot of memory. The maximum for this set is 6300 seconds.

The total CPU time for this set of (ℓ, m) is 4.7 days.

CPU time per elliptic integral (Intel Core i7-8650 @ 1.9 GHz)

An extended divide-and-conquer strategy

To make the computation more efficient, and extend to larger sets of I, ℓ, m, we extend our divide-and-conquer strategy to keep a database of components and integrals:

- "flatten" each I, ℓ, m integrand into a linear combination of components $K+\sum_{k} c_{k} X_{k}$, as described before

An extended divide-and-conquer strategy

To make the computation more efficient, and extend to larger sets of I, ℓ, m, we extend our divide-and-conquer strategy to keep a database of components and integrals:

- "flatten" each I, ℓ, m integrand into a linear combination of components $K+\sum_{k} c_{k} X_{k}$, as described before
- construct a database of all the unique components, with the following fields:
- identifier

■ status (e.g., "TODO", "DONE", or "FAIL")

- component integrand X_{k}
- component integral $\int_{0}^{2 \pi} X_{k} d \beta$

An extended divide-and-conquer strategy

To make the computation more efficient, and extend to larger sets of I, ℓ, m, we extend our divide-and-conquer strategy to keep a database of components and integrals:

- "flatten" each I, ℓ, m integrand into a linear combination of components $K+\sum_{k} c_{k} X_{k}$, as described before
- construct a database of all the unique components, with the following fields:
- identifier

■ status (e.g., "TODO", "DONE", or "FAIL")

- component integrand X_{k}
- component integral $\int_{0}^{2 \pi} X_{k} d \beta$
- repeat until all components are done:
- extract some not-yet-done components from the database
- integrate those components (in parallel on a cluster)
- update the database with the results of the integrations

An extended divide-and-conquer strategy

To make the computation more efficient, and extend to larger sets of I, ℓ, m, we extend our divide-and-conquer strategy to keep a database of components and integrals:

- "flatten" each I, ℓ, m integrand into a linear combination of components $K+\sum_{k} c_{k} X_{k}$, as described before
- construct a database of all the unique components, with the following fields:
- identifier

■ status (e.g., "TODO", "DONE", or "FAIL")

- component integrand X_{k}
- component integral $\int_{0}^{2 \pi} X_{k} d \beta$
- repeat until all components are done:
- extract some not-yet-done components from the database
- integrate those components (in parallel on a cluster)
- update the database with the results of the integrations
- assemble each (I, ℓ, m)'s β integral from the K, c_{k} coefficients and the component integrals in the database

Current status

Working on $I=1, \ell=0,2,4, \ldots, 48, m=0$ (Maple technical limitation prevents doing $\ell=50$)

- database has 4518 unique components X_{k}

Current status

Working on $I=1, \ell=0,2,4, \ldots, 48, m=0$ (Maple technical limitation prevents doing $\ell=50$)

- database has 4518 unique components X_{k}
- integrals have been running on Adam Pound's cluster* for about 6 weeks
- currently 4171 components have status DONE, 347 not yet done

[^0]
Current status

Working on $I=1, \ell=0,2,4, \ldots, 48, m=0$ (Maple technical limitation prevents doing $\ell=50$)

- database has 4518 unique components X_{k}
- integrals have been running on Adam Pound's cluster* for about 6 weeks
- currently 4171 components have status DONE, 347 not yet done
- remaining not-yet-done components are those which didn't succeed within ~ 1 day CPU time limit per integration; currently retrying them with ~ 3-day CPU time limit per integration (Intel Xeon 5320 @ 2.2 GHz)

[^1]
Current status

Working on $I=1, \ell=0,2,4, \ldots, 48, m=0$ (Maple technical limitation prevents doing $\ell=50$)

- database has 4518 unique components X_{k}
- integrals have been running on Adam Pound's cluster* for about 6 weeks
- currently 4171 components have status DONE, 347 not yet done
- remaining not-yet-done components are those which didn't succeed within ~ 1 day CPU time limit per integration; currently retrying them with ~3-day CPU time limit per integration (Intel Xeon 5320 @ 2.2 GHz)
- some integrals take a lot of memory: largest so far was 315 GB memory (!)

[^2]
Current status

Working on $I=1, \ell=0,2,4, \ldots, 48, m=0$ (Maple technical limitation prevents doing $\ell=50$)

- database has 4518 unique components X_{k}
- integrals have been running on Adam Pound's cluster* for about 6 weeks
- currently 4171 components have status DONE, 347 not yet done
- remaining not-yet-done components are those which didn't succeed within ~ 1 day CPU time limit per integration; currently retrying them with ~3-day CPU time limit per integration (Intel Xeon 5320 @ 2.2 GHz)
- some integrals take a lot of memory: largest so far was 315 GB memory (!)
- many integrals are very large: median size (printed out) is 116,000 characters, maximum size 6.7 million characters
- database size is currently 3.1 GB

[^3]
Largest integral completed so far

\#3985 in the database:

$$
X_{k}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{1 / 2} \sin ^{2} \beta}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{57}}
$$

Largest integral completed so far

\#3985 in the database:

$$
x_{k}=\frac{\left[\left(4 M r_{0}^{2}-8 M^{2} r_{0}\right) \cos ^{2} \beta+\left(r_{0}-3 M\right)(\Delta r)^{2}+4 r_{0}^{3}-20 M r_{0}^{2}+24 M^{2} r_{0}\right]^{1 / 2} \sin ^{2} \beta}{\left(M \cos ^{2} \beta+r_{0}-3 M\right)^{57}}
$$

Integral took about 2 hours CPU time:

$\int_{0}^{2 \pi} x_{k} d \beta=$
$-1 / 832843192699583869114919332328039753766781580004556800 * r 0 *(380417909501120488$ 66012040380360645394177697720438803382086294874633847354336080936367189009818541 $51282803816058060800 * M^{\wedge} 110 * \mathrm{rO}^{\wedge} 55-20922985022561626876306622209198354966797733746$ $2413418601474621810486160448848445150019539554001978320554209883193344000 * \mathrm{M}^{\wedge} 109 *$ r0^56-42898808601999443484226115872348587122639223346825103202276211727893673430 $921803808212235313059899641759446702489600 * M^{\wedge} 109 * r 0^{\wedge} 54 * D e l t a _r \wedge 2+570151341864804$ 33237935545520065517284523824458507656568901834443357478722311201303380324528465 $53909235102219317018624000 * M^{\wedge} 108 * r^{\wedge}{ }^{\wedge} 57+23165356645079699481482102571068237046225$ $18060728555572922915433306258365269777405643460706905234580655010121934438400 * \mathrm{M}^{-}$ $108 *$ r0^55*Delta_r^2-930677522987342195516434903727549826799107354752412894535838 ... skip 83967 lines
$8930131579947865654427648 * \mathrm{M} * \mathrm{rO}^{\wedge} 71 *$ Delta_r^96-85672898165824655870753189432131584 *M*r0^69*Delta_r^98+27259558507307845049785105728405504*M*r0^67*Delta_r^100-9086 $519502435948349928368576135168 * M *$ O~ $65 *$ Delta_r^102 +32451855365842672678315602057 $62560 * M *$ r0^63*Delta_r^104-1298074214633706907132624082305024*M*r0^61*Delta_r^106 $+649037107316853453566312041152512 * \mathrm{M} * \mathrm{rO}^{\wedge} 59 *$ Delta_r^108-6490371073168534535663120 $41152512 * M *$ r0^57*Delta_r^110-324518553658426726783156020576256*M*r0^55*Delta_r^1 $\left.12+2283850746669557096487036899494838068356102178363870539392483328 * \mathrm{r} 0^{\wedge} 168\right) / \mathrm{M} /(2$ $* \mathrm{M}-\mathrm{r} 0)^{\wedge} 56 / D e l t a _r \wedge 110 /(-\mathrm{r} 0+3 * \mathrm{M}) /\left(9 * \mathrm{M}^{\wedge} 2-6 * \mathrm{M} * \mathrm{r} 0+\mathrm{rO}{ }^{\wedge} 2\right)^{\wedge} 27 /\left(16 * \mathrm{M}^{\wedge} 2 * \mathrm{rO}-16 * \mathrm{M} * \mathrm{r} \mathrm{O}^{\wedge} 2-3 * \mathrm{M} *\right.$ Delta_r^2+4*r0^3+r0*Delta_r^2) ^(1/2) *EllipticPi $\left(-M /(2 * M-r 0), 2 *\left(1 /\left(16 * M^{\wedge} 2 * r 0-16 * M\right.\right.\right.$ *r0^2-3*M*Delta_r $\left.\left.\left.{ }^{\wedge} 2+4 * r 0^{\wedge} 3+r 0 * D e l t a _r \wedge 2\right) * M * r 0 *(-2 * M+r 0)\right)^{\wedge}(1 / 2)\right)$

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

I don't know yet:

- How much do the final expressions simplify?
- What common subexpressions are there?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

I don't know yet:

- How much do the final expressions simplify?
- What common subexpressions are there?
- Can the huge-integer coefficients be rounded to double-precision floating-point without introducing significant errors?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

I don't know yet:

- How much do the final expressions simplify?
- What common subexpressions are there?
- Can the huge-integer coefficients be rounded to double-precision floating-point without introducing significant errors?
- For a given r_{0}, many subexpressions are just polynomials in Δr. What other precomputation can/should be done for a given r_{0}, so as to make evaluation for each Δr cheaper?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

I don't know yet:

- How much do the final expressions simplify?
- What common subexpressions are there?
- Can the huge-integer coefficients be rounded to double-precision floating-point without introducing significant errors?
- For a given r_{0}, many subexpressions are just polynomials in Δr. What other precomputation can/should be done for a given r_{0}, so as to make evaluation for each Δr cheaper?
- What will the expressions for $\mathrm{I} \neq 1$ and/or $m \neq 0$ look like?

Cost of evaluating the result

Given the complexity of many of the integrals, it's natural to wonder:

1. How expensive will it be to numerically evaluate our final result for a given set of $\left(r_{0}, \Delta r\right)$?
2. How will this compare to the cost of doing the β integrals numerically?

I don't know yet:

- How much do the final expressions simplify?
- What common subexpressions are there?
- Can the huge-integer coefficients be rounded to double-precision floating-point without introducing significant errors?
- For a given r_{0}, many subexpressions are just polynomials in Δr. What other precomputation can/should be done for a given r_{0}, so as to make evaluation for each Δr cheaper?
- What will the expressions for $\mathrm{I} \neq 1$ and/or $m \neq 0$ look like?

Still lots to explore here!

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

- each β integral depends on the parameters r_{0} and Δr

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

- each β integral depends on the parameters r_{0} and Δr
- there are about 2500β integrals, each of which we'd like to numerically evaluate for about $10^{3}-10^{5}$ distinct $\left(r_{0}, \Delta r\right)$ parameters

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

- each β integral depends on the parameters r_{0} and Δr
- there are about 2500β integrals, each of which we'd like to numerically evaluate for about $10^{3}-10^{5}$ distinct $\left(r_{0}, \Delta r\right)$ parameters
- divide-and-conquer algorithm:
- "flatten" each β integral into a linear combination of "component" integrals, where the linear-combination coefficients depend on the parameters r_{0} and Δr, but not on β
- integrate the (unique) components in parallel on a cluster
- keep a database of all the unique components and their integrals
- assemble the final results from the component integrals

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

- each β integral depends on the parameters r_{0} and Δr
- there are about 2500β integrals, each of which we'd like to numerically evaluate for about $10^{3}-10^{5}$ distinct $\left(r_{0}, \Delta r\right)$ parameters
- divide-and-conquer algorithm:
- "flatten" each β integral into a linear combination of "component" integrals, where the linear-combination coefficients depend on the parameters r_{0} and Δr, but not on β
- integrate the (unique) components in parallel on a cluster
- keep a database of all the unique components and their integrals
- assemble the final results from the component integrals
- some integrals take a lot of CPU/memory to compute, and are very large

Conclusions

Several parts of our 2nd-order self-force calculation require computing the Barack-Lousto-Sago tensor-spherical-harmonic modes of the 1st-order puncture. The main difficulty in doing this is the β integrals.

- each β integral depends on the parameters r_{0} and Δr
- there are about 2500β integrals, each of which we'd like to numerically evaluate for about $10^{3}-10^{5}$ distinct $\left(r_{0}, \Delta r\right)$ parameters
- divide-and-conquer algorithm:
- "flatten" each β integral into a linear combination of "component" integrals, where the linear-combination coefficients depend on the parameters r_{0} and Δr, but not on β
- integrate the (unique) components in parallel on a cluster
- keep a database of all the unique components and their integrals
- assemble the final results from the component integrals
- some integrals take a lot of CPU/memory to compute, and are very large
- I don't yet know how expensive it will be to evaluate the result expressions, or how this will compare to the cost of doing the integrals numerically

[^0]: * Funding: Royal Society

[^1]: * Funding: Royal Society

[^2]: * Funding: Royal Society

[^3]: * Funding: Royal Society

