Comparing different metric reconstruction procedures in Kerr spacetime

Zachary Nasipak

NASA Postdoctoral Fellow Goddard Space Flight Center 03 July 2023

26th Capra Meeting 2023 Niels Bohr Institute Copenhagen, Denmark

Tools for A Comparing different metric reconstruction procedures in Kerr spacetime

Zachary Nasipak

NASA Postdoctoral Fellow Goddard Space Flight Center 03 July 2023

26th Capra Meeting 2023 Niels Bohr Institute Copenhagen, Denmark

Motivation

Z. Nasipak - 26th Capra - 03 July 2023

Solve for perturbations of Kerr

$$g_{\mu\nu} = g_{\mu\nu}^{\text{Kerr}} + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + O(\epsilon^3)$$

Motivation

Z. Nasipak - 26th Capra - 03 July 2023

Solve for perturbations of Kerr

 $g_{\mu\nu} = g^{\text{Kerr}}_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + O(\epsilon^3)$

Considerations for 1st-order

- Dealing w/ lack of spherical symmetry
 - Teukolsky Eqs vs Einstein Eqs
 - Frequency vs time domain
- Gauge(s)
 - Lorenz, radiation, Bondi-Sachs, etc
- Covering 4D parameter space
- Sufficiently regular data for 2nd-order
 - Puncture schemes, regularisation
- Accessible, open-source codes

A roadmap for Kerr*

Z. Nasipak - 26th Capra - 03 July 2023

A roadmap for Kerr*

Z. Nasipak - 26th Capra - 03 July 2023

Z. Nasipak - 26th Capra - 03 July 2023

Z. Nasipak - 26th Capra - 03 July 2023

Z. Nasipak - 26th Capra - 03 July 2023

Metric reconstruction

$$h_{\mu\nu} = \sum_{X} \left[\operatorname{Re}(S_4^{\dagger} \Phi_{+2}^X)_{\mu\nu} + \mathbf{I} \right]_X$$

Z. Nasipak - 26th Capra - 03 July 2023

 $\operatorname{Re}(S_{0}^{\dagger}\Phi_{-2}^{X})_{\mu\nu}] + \dot{\tilde{g}}_{\mu\nu} + x_{\mu\nu} + \mathscr{L}_{\xi}g_{\mu\nu}$

Metric reconstruction

$$h_{\mu\nu} = \sum_{X} \left[\operatorname{Re}(S_4^{\dagger} \Phi_{+2}^X)_{\mu\nu} + \mathbf{I} \right]_X$$

Z. Nasipak - 26th Capra - 03 July 2023

Metric reconstruction
$$h_{\mu\nu} = \sum_{X} [\operatorname{Re}(S_{4}^{\dagger} \Phi_{+2}^{X})_{\mu\nu} + \operatorname{Re}(S_{4}^{\dagger} \Phi_{+2}^{X})_{\mu\nu} + \operatorname{Re}(S_{4}^{T} \Phi_{+2}^{X})_{\mu\nu} + \operatorname{Re}(S_{$$

Reconstruction procedures

GHZ(+) method

- Green, Hollands, Zimmerman (2020) \bullet
- Toomani, Zimmerman, Spiers, Hollands, lacksquarePound, Green (2021)

AAB(+) method

- Dolan, Kavanagh, Wardell (2022) ●
- Dolan, Durkan, Kavanagh, Wardell (2023)

Reconstruction procedures

GHZ(+) method

- Green, Hollands, Zimmerman (2020) \bullet
- Toomani, Zimmerman, Spiers, Hollands, \bullet Pound, Green (2021)
- Vacuum regions: construct "shadowless" ulletHertz potential via CCK+Ori procedure

$$\begin{array}{ll} \textbf{Outgoing} \\ \textbf{radiation} \\ \textbf{gauge} \end{array} \quad \begin{array}{l} h_{\mu\nu}^{\text{ORG}} = 2 \text{Re}(S_4^{\dagger} \Phi_{+2}^{\text{ORG}})_{\mu\nu} \\ \partial_r^4 \bar{\Phi}^{\text{ORG}} \sim \psi_4 \end{array}$$

$$\begin{array}{l} \textbf{Ingoing} \\ \textbf{radiation} \\ \textbf{gauge} \end{array} \quad \begin{array}{l} h_{\mu\nu}^{\text{IRG}} = 2 \text{Re}(S_0^{\dagger} \Phi_{-2}^{\text{IRG}})_{\mu\nu} \\ \partial_r^4 \bar{\Phi}^{\text{IRG}} \sim \psi_0 \end{array}$$

AAB(+) method

- Dolan, Kavanagh, Wardell (2022)
- Dolan, Durkan, Kavanagh, Wardell (2023)

Reconstruction procedures

GHZ(+) method

- Green, Hollands, Zimmerman (2020)
- Toomani, Zimmerman, Spiers, Hollands, Pound, Green (2021)
- Vacuum regions: construct "shadowless" Hertz potential via CCK+Ori procedure

$$\begin{array}{ll} \textbf{Outgoing} \\ \textbf{radiation} \\ \textbf{gauge} \end{array} \quad \begin{array}{l} h_{\mu\nu}^{\text{ORG}} = 2 \text{Re}(S_4^{\dagger} \Phi_{+2}^{\text{ORG}})_{\mu\nu} \\ \partial_r^4 \bar{\Phi}^{\text{ORG}} \sim \psi_4 \end{array}$$

$$\begin{array}{l} \textbf{Ingoing} \\ \textbf{radiation} \\ \textbf{gauge} \end{array} \quad \begin{array}{l} h_{\mu\nu}^{\text{IRG}} = 2 \text{Re}(S_0^{\dagger} \Phi_{-2}^{\text{IRG}})_{\mu\nu} \\ \partial_r^4 \bar{\Phi}^{\text{IRG}} \sim \psi_0 \end{array}$$

AAB(+) method

- Dolan, Kavanagh, Wardell (2022)
- Dolan, Durkan, Kavanagh, Wardell (2023)
- Vacuum regions: CCK+Ori-like procedure w/ linear combination of spin-weights

Anti-symmetric gauge $\hat{h}^{aAAB}_{\mu\nu} = \operatorname{Re}(S^{\dagger}_{0}\Phi^{aAAB}_{-2})_{\mu\nu} - \operatorname{Re}(S^{\dagger}_{4}\Phi^{aAAB}_{+2})_{\mu\nu}$ $\dot{\Phi}_0^{aAAB} \sim \psi_0 \qquad \dot{\Phi}_4^{aAAB} \sim \psi_4$ Symmetric gauge $\hat{h}_{\mu\nu}^{\text{sAAB}} = \text{Re}(S_0^{\dagger}\Phi_{-2}^{\text{sAAB}})_{\mu\nu} + \text{Re}(S_4^{\dagger}\Phi_{+2}^{\text{sAAB}})_{\mu\nu}$ $\eth^4 \bar{\Phi}_0^{sAAB} \sim \psi_0 \qquad \eth'^4 \bar{\Phi}_4^{sAAB} \sim \psi_4$

Hertz potentials w/ pybhpt

Load pybhpt

from pybhpt.geo import KerrGeodesic from pybhpt.teuk import TeukolskyMode from pybhpt.hertz import HertzMode from pybhpt.hertz import available_gauges import numpy as np print(available_gauges)

√ 0.2s [1]

Python

['IRG', 'ORG', 'SAAB0', 'SAAB4', 'ASAAB0', 'ASAAB4'] • • •

Z. Nasipak - 26th Capra - 03 July 2023

Hertz potentials w/ pybhpt

Load pybhpt

from pybhpt.geo import KerrGeodesic from pybhpt.teuk import TeukolskyMode from pybhpt.hertz import HertzMode from pybhpt.hertz import available_gauges import numpy as np print(available_gauges)

[1] √ 0.2s

Python

['IRG', 'ORG', 'SAAB0', 'SAAB4', 'ASAAB0', 'ASAAB4'] • • •

Calculate background geodesic

a, p, e, x, nsamples = (0.9, 8., 0.2, 0.9, 2**9) geo = KerrGeodesic(a, p, e, x, nsamples) [2] 🗸 0.3s Python

Construct ψ_4

```
s, j, m, k, n = (-2, 2, 2, 1, 3)
  teuk = TeukolskyMode(-2, j, m, k, n, geo)
  teuk.solve(geo)
√ 0.1s
                                                 Python
```

```
[3]
```


Z. Nasipak - 26th Capra - 03 July 2023

Hertz potentials w/ pybhpt

Z. Nasipak - 26th Capra - 03 July 2023

$$h_{ab} = \sum_{n_i} \sum_{s=\pm 2} \tilde{h}_{ab,s}^{(n_t, n_r, n_s, n_\phi)}$$

Z. Nasipak - 26th Capra - 03 July 2023

 $\partial^{(r,\theta)} \partial_t^{n_t} \partial_r^{n_z} \partial_{\pm}^{n_s} \partial_{\phi}^{n_{\phi}} \Phi_s(t,r,\theta,\phi)$

$$h_{ab} = \sum_{n_i} \sum_{s=\pm 2} \tilde{h}_{ab,s}^{(n_t, n_r, n_s, n_\phi)}$$

Z. Nasipak - 26th Capra - 03 July 2023

$(r,\theta) \partial_t^{n_t} \partial_r^{n_z} \partial_{\pm}^{n_s} \partial_{\phi}^{n_{\phi}} \Phi_s(t,r,\theta,\phi)$

$$h_{ab} = \sum_{\substack{n_i \ s = \pm 2}} \sum_{i=1}^{\infty} \tilde{h}_{ab,s}^{(n_t, n_r, n_s, n_{\phi})}$$

Z. Nasipak - 26th Capra - 03 July 2023

 $\partial_t^{n_t} \partial_t^{n_t} \partial_r^{n_z} \tilde{\partial}_{\pm}^{n_s} \partial_{\phi}^{n_{\phi}} \Phi_s(t, r, \theta, \phi)$

$$h_{ab} = \sum_{\substack{n_i \ s = \pm 2}} \sum_{i=1}^{\infty} \tilde{h}_{ab,s}^{(n_t, n_r, n_s, n_{\phi})}$$

Z. Nasipak - 26th Capra - 03 July 2023

 $(r,\theta) \partial_t^{n_t} \partial_r^{n_z} \partial_{\pm}^{n_s} \partial_{\phi}^{n_{\phi}} \Phi_s(t,r,\theta,\phi)$

Generalized Detweiler redshift invariant

Define redshift along orbit •

- ullet

$$\langle \Delta U \rangle = \langle \tilde{U} \rangle - \langle U \rangle = \frac{1}{2} \langle U \rangle \langle h_{uu}^{\mathsf{R}} \rangle \qquad \langle f \rangle = \frac{1}{T} \int_{0}^{T} f(\tau) d\tau$$

• "Invariant" measure of conservative perturbations

$$U = \frac{dt}{d\tau}$$

Look at average difference between background and perturbed spacetime $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}^R$

 $\Delta U^{\text{sAAB}} = -0.325708(3)$ $\Delta U^{\text{ORG}} = -0.325705(1)$ $\Delta U^{\text{IRG}} = -0.325705(1)$

Z. Nasipak - 26th Capra - 03 July 2023

 $\Delta U^{\rm ORG} = -0.325705(1)$ $\Delta U^{\rm IRG} = -0.325705(1)$

Z. Nasipak - 26th Capra - 03 July 2023

- = -0.08921847(1) $\langle \Delta U^{\text{ORG}} \rangle = -0.089218463(7)$
- $\langle \Delta U^{\rm IRG} \rangle = -0.089218463(7)$

Generic Detweiler redshift?

(a, p, e, x) = (0.5, 10., 0.1, 0.9)

Conclusions

- Multiple metric reconstruction methods in vacuum: GHZ+ and AAB+
- Publicly-available open-source Python code pybhpt
- New generalized Detweiler redshift results for inclined orbits
- Future/ongoing work:
 - Incorporate hyperboloidal slicing + spatial compactification
 - Add reconstructed pieces in the source region
 - Generalize code to produce 1st-order GSF
 - Use 1st-order metric perturbation to construct 2nd-order source

