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Motivation



e Self-Force Resonance occurs when w, and wy are in rational
ratio (Flanagan&Hinderer, 2012).
O err = j(iﬂe =0 JryJo € 4
e The impact is \/n~! and can be larger than 1PA
° (b — 77—1¢Adiabatic + n—é(bResonance + (blPostAdiabatic I oao

o Most EMRI systems will experience the large
resonances(Ruangsri&Hughes, 2014).
e Integrablity is initially destroyed at the resonance.

— Self-Force Resonance is a very important phenomenon




Motivation2 Conservative Part

e Separable into dissipative and conservative parts.

o Gz, 2] = 2(G™[z, 2] + (G*V[z, 2'])
Contribution of the conservative part during resonance is
pointed out (Isoyama et al. 2013& 2019).

Verified by Nasipak 2022 for scalar case.

400

o GR case??
e Regularization is necessary for the conservative part.

e lim, ,, GY™[z,2/] - o0




Motivation3 New Regularization Procedure

e Isoyama2013 proposed an altanative regularization method.
e very simple
e reduce computational cost?

e Shift the orbit in the direction of the killing vector

e There have been no implementation of this method.

e |t is a point of concern how well it works...

e important to try independet methods for the same problem

\\*K\illing Vector




Resonance and the Significance of This Study

Final Goal

e Calculate conservative part of resonance effect in GR .

e Expecting the altanative regularization method to work well.
This work

e First, try it out with the scalar field.
e Conservative part of Hamiltonian

e Verify how well the new regularization method works.
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Method



Hamilton eq

We can take action-angle variable

o OH _ W O Hing
Y A YA
j o 8£ o _aHint

‘o 8QOc B 84]@

e GR case

1
Hiy = ih,wu“u” Metric reconstruction is necessary

e Scalar toy model case

(5, — @ = /dT’G(a:,:v(T’))

e G is a Green function for Teukolsky eqation.
e We can obtain it straightforwardly
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Orbital Averaging

a I

Non-resonance orbit

i,,
i

1 (T ; S
A) = lim — A
) = Jim 57 [ draem) )
+ Adg®  for resonant orbit
Region

Resonance (&conservative) case (" resonant orbit

<aH>_1a<H>

dq*/ 2 0q8y

initial phase dependence appears!
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descritization of w

As the source z(7) is periodic, T integral makes w descritized.

/ dTeiwth—(ner +n9w9+mw¢)7

— ;5 (w — Q" — ngQG = mQ¢)

For non-resonant orbit, w is charactarized by (n,,ng, m)
For resonant case,

nj Tt = nj999_1 =nQ!

Then, w is charactarized by (n,m)

Wn,m = N+ mQy
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Point Spliting Regularization (Altanative Regularization)

GY™[z(X), z(N)] and G[z(N), z(\)] diverge at z(A\) — z()\), so
we have to regularize them to calculate separately.
Point Spliting Regularization (Isoyama et al. 2013)

() = AN = () + 3¢,

) = () =240 - o€
with

E*(¢) = cos¢ 555) + (Qgp cos¢ — Qsin()fé‘d))

e=0 <—
coincidence limit
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Altanative Regularization Procedure

G®Y™ is given by

Gsym [Z, Z/] = e_iw(t_t/)—’_im((b_(b,)Sw,l,m(Q)Sw,l,m(e/)Radial(r7 T/) :

w,l,m

due to the killing direction, we can extract the regularized

expression very easily,

sym __—iwe cos (+ime(2y cos (—2 sin sym /
Gl 2] metecosChimel@acost=ame) o G [z, 2.

€,¢ do not depend on 7. So Hamiltonian is given by
Hw ; m(ﬁ) _ e—iwscos§+ime(9¢ cos (—Qsin() « Hw ] m(e _ 0)

€ dependence is calculated very easily!
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Final Expression

Finally
H(G) _ Z glne cos (Fime sin CHwnm,l,m(e _ 0)
n,l,m
Explicit Expression

<H> _ Z <H>n,l,mein61+im62

n,l,m

_ Z eine1times /deT/eiwnﬁm(AtAt’)+im(A¢A¢>’)

n,l,m

X Gwnm JLm (9> ewnm Lm (el)anm Lm (T, r/)

We need not decompose the Spheroidal Harmonics into the
Spherical Harmonics.
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S-part decomposition

S-part is also decomposed into (/V,m) modes
HS = /dT’GS[z+,z(7/)}
Fourier Transformation

G%,m = /deldEQGS(El,62)6_2N961_2m629¢

S iNecos(+imesin( 7S
H® =3 e Hy m
N,m

e (H®)) has no periodicity with .
e This causes discontinuous at the boundary.

Therefore, apply a window function to smooth at the boundary.

. W(e) = cos? (ae) cosh* (aQ)
UL 15




Regularization

[ mode summation first
Hym = Z Hnim (1)

S-part subtraction

H® =1lim H(e) — H(e)

e—0

:hmeiNecosC-l—imesinC ZHN,m(GZO)_ ZH]%,m(€:0)
Nym

e—0
N,m

= Z HN,m(E = 0) — H]%,m(e = 0) (2)
N,m

Regularization parameter € does not appear in actual computations.

]
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Result



1. Calculating (H )y, i m, to integrate the mode functions.

2. Sum up (H)p 1 m overl

Hn,m = Z<H>n,l,m o D . -
l
0.9 451 02 =

3. regularization for (n,m)

Q:Qyp=1:2
AN =0.3
H(R) — Hnm_ H(S)>n.m A=46
(H™) mzm< Inm — m y

18




[-sum1

2<H>n,l,m (3)

l
<Hn,l,m>
104
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20 40 60 80 100 /
o H x l% too slow

e Hamiltonian is oscilating for [
e The oscillation makes fitting difficult
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[-sum2: WKB aprox

e WKB-approximation Ry, (r) and Oy, (6) forl
e We derive analytical assymptotic expressions for
(H)n,1,m:l — oo (up to subleading order)

<Hn,/, m>

0.001

10‘4;‘,

= Numerical

1075 |y

= Approx
1078

1077

1078

-
- .
=l YITP — we can sum over [ mode 20




Regularization

<H£m>: Z<Him>n,l,m _<H(S)>n,m
l

e Fitting is necessary for computational cost reasons

H

= Original ] ]

o S-part e Cancelating divergent
2.x107
part
1.x107
e Regularization
o procedure looks working

well...
2.x1075
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Regularization

<H'r}§,m> = (Z(Hinwn,l’m) - <H(S)>n,m

1
e Fitting is necessary for computational cost reasons

H?% behaving not well...

R
H nm

e Strong oscillation
requires careful fitting
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Cause of the Oscillation (Orbital Crossing)

H,, ,, is the Fourier transform in ¢t and ¢ — It can be projected

onto the r-6 plane

cos(0)
\*ia‘rk\tersectign”"' \
\\ /
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Removing the Oscillation

e |dentify the cause of oscillation (orbit crossing)

e Apply a physically appropriate window function
<ﬁr}zm> = Z ann’,mfm’ <HR>n’,m’

n’.m!
H n,m
4.x10°° = original Window
| . = window « | intersection
2.%107° 1
[ L
* * )
. \ 1 .
3 | 4 gofi* 88 Meeetetens i
Sspepasmepeotiopr MY s A AR 2 n * ‘ ‘ % time
40 L 200 L lsld |1 20/ 4 siTia0 Crossing points of the
¢l Il . i
i A (14 ‘ rO-projected orbit

succeeding in eliminating oscillatory behavior!
. YTP Convergence is not so fast—Higher order S-part 24



Accelerating convergence

e To accelerate the convergence further, we use the higer order

S-part(Heffernan 2022)
= Original(residual)
/\ » S—part(higer)
e S Do N n
e not matching well

5 f““ :} 15 40 25
S\ f
.,

?

/

-0.01

-0.02

-0.03]

A\\.\/‘
This is the problem we are working on now.

LIYiTe
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Summary and Future Work

\
Summary
e \We numerically calculate the conservative part during
resonance for scalar field
e \We encountered several challenges and addressed them to
K some extent J
(" Future Work )
e Successful cancellation with higher S-part
e Extend the model to include gravitational interactions
J

Thank you for listening.
JIYiTP 2



Hotn(r) =gy | 4 (7 Patr) sl )07

@
=f(rPy(r)5(+eos2V/ITTDOE])  (5)
Hgin(r) = H3 (1) + B0 (7) ()

e H can be decomposed into not-oscilating avaraged part
H*F (7) and oscilating part H%% (7)

n,lym n,l,m

OSsC H o o
° Hn7l7m(7) is the cause of oscilation.
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Calculating (H®)) corresponding G%)(S-part)

/m/mG (24 (), 2 (7)) (7)

19 | Qe+ 0 (8)

e x4 is shifted € in the Killing direction.
= /€7 + €2 ,( = arctan (E—f)

Fourier transformation for €1, €1,
02 :
(HO) = 125 [ der [ dse@rmd @) (9

"Y TP 28
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4:S-part(Window function)

1) = Y1)y et 0@) (10)

o (H®) has no periodicity with e.
e This causes discontinuous at the boundary.

Therefore, apply a window function to smooth at the boundary.

W () = cos* afde cosh* afde (11)

& & 8 & g &

B
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(@) m=1

1TYITP

YUKAWA INSTITUTE FOR
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Sk

(b) m=9
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Appendix

In practice, it is convenient to use Mino variable A

We can show

()22 oy

dr " 9J, \ oL, " 9Jy \ 0Ly
_ 0QO(SH),  0Q 0( H) (13)
T 8J, OAT, , 0Jy OATy
(14)
[=TA+AT (15)

To obtain the evolution of the orbital elements, we have to
calculate (X HSY™)

IIYiTe a1
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4 5: EANME (REORE)

e before averaging Hy, ,, — Hnsm

. |

S Atad j\ A /rw ‘ ‘ A

\,[‘t;ulj'\/ > AT N ‘-“v ‘5\;\3~a~< M=
A

-0.04

Figure 2: n =3 ICEE L. ##h \(B5E). T

e \=11,35ICmEZEATEZTDIREN RSN S
o ZOBEZIE r — 0 BRET BEFZIICT IR
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E4 3. detail of WKB

mode funcion R(r) follows the equation below.

A 1 /AN 1A
R = RVA (17)
20,2 4 42)2 _ 2.2
U(r):%w (r* +a”) Aélramw—l—ma 22 (18)
A=1(1+1)+.. (19)

[,A dominates for large [
R D WKBELEL () —T 1 >~ 7)

1Y = () e (s [y L)



radial part of green function

radial part is

R(r,r") = % (Rin('r)Rup(r/)U(r’ —7r)+ Rin(r')Rup('r)U('r — 7"'))
W is Wronskian.

0.0015
0.0010

0.0005 -

50 55 60 65

Figure 3: y-axis Radial,x-axis 7’/,r = 5.64
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E&3: angle WKB

RRIC 0 DE— NBEE S, m B WKBIEEIL T

S(0) ~ { \/ﬁ COS[[ {(1 +1) arcsin|cos 9]}} , (+m=e
Warcsm cos 0 (I +m = o
\/7
(23)
k 3R 18 L EE
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4

24 3:approximation of green function

To combine these WKB-approximated mode functions,

G(z(7), (7)) =f(x(1)) f(z(7")) cos(/I(l + 1)8) cos(+/I(I + 1)¢’

(') 1
exp | — l(l+1)/ —dr
[ r(r) VA

For large I, large r — 7’is decaying —7 ~ 7’

r=17—-17<<7T

" s 2
/7(7') ﬁ " ﬁ ! ( )
G(r, 7+ 01) ~ [f(z(1))* + f'or] e (O (25)

-m 1 5 /I 0 o
] YEPpp this, we can integrate over /=07 explicitly. 6
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1
Hotn(r) =gy | 4 (7 Patr) sl )07
(29)

:f(T)Qg(T)%(l + cos[2+/I0 + DO(7))) (27)

Hyin(7) = Hyy () + Hypn (7) (28)

e H can be decomposed into not-oscilating avaraged part
H*F (7) and oscilating part H%% (7)

n,lym n,l,m

OSsC H o o
° Hn7l7m(7) is the cause of oscilation.
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524% 3: Result(numerical)

H(x(r)) = / 457G (w(r), 2(r + 67)) (29)

Is the approximation correct?

i
% I w‘ I |1 |‘Muﬁ

i haegttll] r; “\ it

I

Figure 5: y-axis(H ), ;.m, X-axis A, Blue : numerical. Orange : WKB
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E4# 3.  cause of [-oscilation

Oosc

mim(2(7)) is the cause of l-oscilation

stationary approximation

HyF (1)) =((7)) cos[\/I(l + 1)6(7)]
-2
~f(x(T)) cos [ I(1+1) <9(7‘0) e 9(7‘0) >q30)

e 7y is the stationary point.

(HE,) ~F (@ cos[ 2/1(1 + 1)0(ro —f] (31)

Thls is the cause of [-oscilation
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