The orbital evolution of EMRI during self force resonance with altanative regularization procedure

Takafumi Kakehi
collaborator Takahiro Tanaka
July 4, 2023
Yukawa Institute for Theoretical Physics, Kyoto University
Kyoto univ.

Table of Contents

Motivation

Method

Result

Motivation

Method

Result

Motivation

- Self-Force Resonance occurs when ω_{r} and ω_{θ} are in rational ratio (Flanagan\&Hinderer, 2012).
- $j_{r} \Omega^{r}=j_{\theta} \Omega^{\theta}=\Omega \quad j_{r}, j_{\theta} \in \mathbb{Z}$
- The impact is $\sqrt{\eta^{-1}}$ and can be larger than 1PA
- $\phi=\eta^{-1} \phi^{\text {Adiabatic }}+\eta^{-\frac{1}{2}} \phi^{\text {Resonance }}+\phi^{1 \text { PostAdiabatic }}+\cdots$
- Most EMRI systems will experience the large resonances(Ruangsri\&Hughes, 2014).
- Integrablity is initially destroyed at the resonance.
\rightarrow Self-Force Resonance is a very important phenomenon

Motivation2 Conservative Part

- Separable into dissipative and conservative parts.
- $G^{\text {sym }}\left[z, z^{\prime}\right]=\frac{1}{2}\left(G^{\text {ret }}\left[z, z^{\prime}\right]+\left(G^{\text {adv }}\left[z, z^{\prime}\right]\right)\right.$
- Contribution of the conservative part during resonance is pointed out (Isoyama et al. 2013\& 2019).
- Verified by Nasipak 2022 for scalar case.

- GR case??
- Regularization is necessary for the conservative part.
- $\lim _{z^{\prime} \rightarrow z} G^{\text {sym }}\left[z, z^{\prime}\right] \rightarrow \infty$

Motivation3 New Regularization Procedure

- Isoyama2013 proposed an altanative regularization method.
- very simple
- reduce computational cost?
- Shift the orbit in the direction of the killing vector
- There have been no implementation of this method.
- It is a point of concern how well it works...
- important to try independet methods for the same problem

Resonance and the Significance of This Study

Final Goal

- Calculate conservative part of resonance effect in GR .
- Expecting the altanative regularization method to work well.

This work

- First, try it out with the scalar field.
- Conservative part of Hamiltonian
- Verify how well the new regularization method works.

Motivation

Method

Result

Hamilton eq

We can take action-angle variable

$$
\begin{aligned}
q^{\alpha} & =\frac{\partial H}{\partial J_{\alpha}}=\omega^{\alpha}+\frac{\partial H_{\mathrm{int}}}{\partial J_{\alpha}} \\
\dot{J}_{\alpha} & =-\frac{\partial H}{\partial q_{\alpha}}=-\frac{\partial H_{\mathrm{int}}}{\partial q_{\alpha}}
\end{aligned}
$$

- GR case

$$
H_{\mathrm{int}}=\frac{1}{2} h_{\mu \nu} u^{\mu} u^{\nu} \quad \text { Metric reconstruction is necessary }
$$

- Scalar toy model case

$$
H_{\mathrm{int}}=\phi=\int d \tau^{\prime} G\left(x, x\left(\tau^{\prime}\right)\right)
$$

- G is a Green function for Teukolsky eqation.
- We can obtain it straightforwardly

Orbital Averaging

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{q}^{\alpha}=\omega^{\alpha} \\
\left\langle\dot{J}_{\alpha}\right\rangle=\left\langle\frac{\partial H_{\mathrm{int}}}{\partial q^{\alpha}}\right\rangle
\end{array}\right. \\
& \langle A\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d \tau A(x(\tau)) \\
& \quad \neq \int_{\text {Region }} A d q^{\alpha} \quad \text { for resonant orbit }
\end{aligned}
$$

Non-resonance orbit

Resonance (\&conservative) case

$$
\left\langle\frac{\partial H}{\partial q^{\alpha}}\right\rangle=\frac{1}{2} \frac{\partial\langle H\rangle}{\partial q_{\mathrm{ini}}^{\alpha}}
$$

initial phase dependence appears!

descritization of ω

As the source $z(\tau)$ is periodic, τ integral makes ω descritized.

$$
\begin{array}{r}
\int d \tau \mathrm{e}^{i \omega \omega_{t} \tau-\left(n_{r} \omega^{r}+n_{\theta} \omega^{\theta}+m \omega^{\phi}\right) \tau} \\
\rightarrow \frac{1}{\omega_{t}} \delta\left(\omega-n_{r} \Omega^{r}-n_{\theta} \Omega^{\theta}-m \Omega^{\phi}\right)
\end{array}
$$

$$
\Omega^{\alpha}=\frac{\omega^{\alpha}}{\omega^{t}}
$$

For non-resonant orbit, ω is charactarized by $\left(n_{r}, n_{\theta}, m\right)$
For resonant case,

$$
n j_{r} \Omega^{r-1}=n j_{\theta} \Omega^{\theta^{-1}}=n \Omega^{-1}
$$

Then, ω is charactarized by (n, m)

$$
\omega_{n, m}=n \Omega+m \Omega_{\phi}
$$

Point Spliting Regularization (Altanative Regularization)

$G^{\text {sym }}\left[z(\lambda), z\left(\lambda^{\prime}\right)\right]$ and $G^{S}\left[z(\lambda), z\left(\lambda^{\prime}\right)\right]$ diverge at $z(\lambda) \rightarrow z\left(\lambda^{\prime}\right)$, so we have to regularize them to calculate separately.

Point Spliting Regularization (Isoyama et al. 2013)

$$
\begin{aligned}
& z^{\mu}(\lambda) \rightarrow z_{+}^{\mu}(\lambda) \equiv z^{\mu}(\lambda)+\frac{\epsilon}{2} \xi^{\mu}, \\
& z^{\mu}(\lambda) \rightarrow z_{-}^{\mu}(\lambda) \equiv z^{\mu}(\lambda)-\frac{\epsilon}{2} \xi^{\mu}
\end{aligned}
$$

with

$$
\xi^{\mu}(\zeta) \equiv \cos \zeta \xi_{(t)}^{\mu}+\left(\Omega_{\phi} \cos \zeta-\Omega \sin \zeta\right) \xi_{(\phi)}^{\mu}
$$

$\epsilon=0 \Longleftrightarrow$
coincidence limit

Altanative Regularization Procedure

$G^{\text {sym }}$ is given by

$$
G_{\omega, l, m}^{\mathrm{sym}}\left[z, z^{\prime}\right]=\mathrm{e}^{-i \omega\left(t-t^{\prime}\right)+i m\left(\phi-\phi^{\prime}\right)} S_{\omega, l, m}(\theta) S_{\omega, l, m}\left(\theta^{\prime}\right) \operatorname{Radial}\left(r, r^{\prime}\right)
$$

due to the killing direction, we can extract the regularized expression very easily,

$$
G_{\omega, l, m}^{\mathrm{sym}}\left[z_{+}, z_{-}\right]=\mathrm{e}^{-i \omega \epsilon \cos \zeta+i m \epsilon\left(\Omega_{\phi} \cos \zeta-\Omega \sin \zeta\right)} \times G_{\omega, l, m}^{\mathrm{sym}}\left[z, z^{\prime}\right] .
$$

ϵ, ζ do not depend on τ. So Hamiltonian is given by

$$
H_{\omega, l, m}(\epsilon)=\mathrm{e}^{-i \omega \epsilon \cos \zeta+i m \epsilon\left(\Omega_{\phi} \cos \zeta-\Omega \sin \zeta\right)} \times H_{\omega, l, m}(\epsilon=0)
$$

ϵ dependence is calculated very easily!

Final Expression

Finally

$$
H(\epsilon)=\sum_{n, l, m} \mathrm{e}^{i n \epsilon \cos \zeta+i m \epsilon \sin \zeta} H_{\omega_{n m}, l, m}(\epsilon=0)
$$

Explicit Expression

$$
\begin{aligned}
\langle H\rangle= & \sum_{n, l, m}\langle H\rangle_{n, l, m} \mathrm{e}^{i n \epsilon_{1}+i m \epsilon_{2}} \\
= & \sum_{n, l, m} \mathrm{e}^{i n \epsilon_{1}+i m \epsilon_{2}} \int d \tau d \tau^{\prime} \mathrm{e}^{-i \omega_{n, m}\left(\Delta t-\Delta t^{\prime}\right)+i m\left(\Delta \phi-\Delta \phi^{\prime}\right)} \\
& \times \Theta_{\omega_{n m}, l, m}(\theta) \Theta_{\omega_{n m}, l, m}\left(\theta^{\prime}\right) R_{\omega_{n m}, l, m}\left(r, r^{\prime}\right)
\end{aligned}
$$

We need not decompose the Spheroidal Harmonics into the Spherical Harmonics.

S-part decomposition

S-part is also decomposed into (N, m) modes

$$
H^{S}=\int d \tau^{\prime} G^{S}\left[z^{+}, z^{-}\left(\tau^{\prime}\right)\right]
$$

Fourier Transformation

$$
\begin{aligned}
& G_{N, m}^{S}=\int d \epsilon_{1} d \epsilon_{2} G^{S}\left(\epsilon_{1}, \epsilon_{2}\right) \mathrm{e}^{-i N \Omega \epsilon_{1}-i m \epsilon_{2} \Omega_{\phi}} \\
& H^{S}=\sum_{N, m} \mathrm{e}^{i N \epsilon \cos \zeta+i m \epsilon \sin \zeta} H_{N, m}^{S}
\end{aligned}
$$

- $\left\langle H^{(S)}\right\rangle$ has no periodicity with ϵ.
- This causes discontinuous at the boundary.

Therefore, apply a window function to smooth at the boundary.

$$
W(\epsilon)=\cos ^{4}(\alpha \Omega \epsilon) \cosh ^{4}(\alpha \Omega \epsilon)
$$

Regularization

l mode summation first

$$
\begin{equation*}
H_{N, m}=\sum_{l=|m|}^{\infty} H_{N, l, m} \tag{1}
\end{equation*}
$$

S-part subtraction

$$
\begin{align*}
H^{R} & =\lim _{\epsilon \rightarrow 0} H(\epsilon)-H^{S}(\epsilon) \\
& =\lim _{\epsilon \rightarrow 0} e^{i N \epsilon \cos \zeta+i m \epsilon \sin \zeta}\left(\sum_{N, m} H_{N, m}(\epsilon=0)-\sum_{N, m} H_{N, m}^{S}(\epsilon=0)\right) \\
& =\sum_{N, m} H_{N, m}(\epsilon=0)-H_{N, m}^{S}(\epsilon=0) \tag{2}
\end{align*}
$$

Regularization parameter ϵ does not appear in actual computations.

Motivation

Method

Result

Outline

1. Calculating $\langle H\rangle_{n, l, m}$ to integrate the mode functions.
2. Sum up $\langle H\rangle_{n, l, m}$ over l

$$
H_{n, m}=\sum_{l}\langle H\rangle_{n, l, m}
$$

set up

a	p	e	x
0.9	4.51	0.2	$\frac{\pi}{4}$

3. regularization for (n, m)

$$
\Omega_{r}: \Omega_{\theta}=1: 2
$$

$$
\left\langle H^{(R)}\right\rangle=\sum_{n, m}\langle H\rangle_{n, m}-\left\langle H^{(S)}\right\rangle_{n, m}
$$

$$
\Delta \lambda=0.3
$$

$$
\Lambda=4.6
$$

4. Do the same procedure for fifferent initial phase $\Delta \lambda$

l-sum1

$$
\begin{equation*}
\sum_{l}\langle H\rangle_{n, l, m} \tag{3}
\end{equation*}
$$

- $H \propto \frac{1}{l^{2}}$ too slow
- Hamiltonian is oscilating for l
- The oscillation makes fitting difficult

l-sum2: WKB aprox

- WKB-approximation $R_{\omega, l, m}(r)$ and $\Theta_{\omega, l, m}(\theta)$ forl
- We derive analytical assymptotic expressions for $\langle H\rangle_{n, l, m}, l \rightarrow \infty$ (up to subleading order)

Regularization

$$
\left\langle H_{n, m}^{R}\right\rangle=\left(\sum_{l}\left\langle H^{\mathrm{int}}\right\rangle_{n, l, m}\right)-\left\langle H^{(S)}\right\rangle_{n, m}
$$

- Fitting is necessary for computational cost reasons

- Cancelating divergent part
- Regularization procedure looks working well...

Regularization

$$
\left\langle H_{n, m}^{R}\right\rangle=\left(\sum_{l}\left\langle H^{\mathrm{int}}\right\rangle_{n, l, m}\right)-\left\langle H^{(S)}\right\rangle_{n, m}
$$

- Fitting is necessary for computational cost reasons
H^{R} behaving not well...

- Strong oscillation requires careful fitting

Cause of the Oscillation (Orbital Crossing)

$H_{n, m}$ is the Fourier transform in t and $\phi \rightarrow$ It can be projected onto the $r-\theta$ plane

$\cos (\theta)$

When projected, the singularity(intersection) appears.

Removing the Oscillation

- Identify the cause of oscillation (orbit crossing)
- Apply a physically appropriate window function

succeeding in eliminating oscillatory behavior!

Accelerating convergence

- To accelerate the convergence further, we use the higer order S-part(Heffernan 2022)

- not matching well...

This is the problem we are working on now.

Summary and Future Work

Summary

- We numerically calculate the conservative part during resonance for scalar field
- We encountered several challenges and addressed them to some extent

Future Work

- Successful cancellation with higher S-part
- Extend the model to include gravitational interactions

Thank you for listening.

Result

$$
\begin{align*}
H_{n, l, m}(\tau) & =\frac{1}{l(l+1)} \int d \tau f(\tau)^{2} g(\tau) \cos ^{2}[\sqrt{l(l+1)} \theta(\tau)] \tag{4}\\
& =f(\tau)^{2} g(\tau) \frac{1}{2}(1+\cos [2 \sqrt{l(l+1)} \theta(\tau)]) \tag{5}\\
H_{n, l, m}(\tau) & =H_{n, l, m}^{\mathrm{avr}}(\tau)+H_{n, l, m}^{\mathrm{osc}}(\tau) \tag{6}
\end{align*}
$$

- H can be decomposed into not-oscilating avaraged part $H_{n, l, m}^{\text {avr }}(\tau)$ and oscilating part $H_{n, l, m}^{\text {osc }}(\tau)$
- $H_{n, l, m}^{\text {osc }}(\tau)$ is the cause of oscilation.

4: S-part

Calculating $\left\langle H^{(S)}\right\rangle$ corresponding $G^{(S)}$ (S-part)

$$
\begin{align*}
\left\langle H^{(S)}\right\rangle & =\int d \tau \int d \tau^{\prime} G^{(S)}\left(x_{+}(\tau), x_{-}\left(\tau^{\prime}\right)\right) \tag{7}\\
& =\frac{\psi_{-1}(\zeta)}{\epsilon}+\psi_{1}(\zeta) \epsilon+O\left(\epsilon^{3}\right) \tag{8}
\end{align*}
$$

- $x_{ \pm}$is shifted ϵ in the Killing direction.
- $\epsilon=\sqrt{\epsilon_{1}^{2}+\epsilon_{1}^{2}}, \zeta=\arctan \left(\frac{\epsilon_{2}}{\epsilon_{1}}\right)$

Fourier transformation for $\epsilon_{1}, \epsilon_{1}$,

$$
\begin{equation*}
\left\langle H^{(S)}\right\rangle_{n, m}=\frac{\Omega^{2}}{4 \pi^{2}} \int d \epsilon_{1} \int d \epsilon_{2} \mathrm{e}^{-i \Omega\left(n \epsilon_{1}+m \epsilon_{2}\right)}\left\langle H^{(S)}\right\rangle \tag{9}
\end{equation*}
$$

4:S-part(Window function)

$$
\begin{equation*}
\left\langle H^{(S)}\right\rangle=\frac{\psi_{-1}(\zeta)}{\epsilon}+\psi_{1}(\zeta) \epsilon+O\left(\epsilon^{3}\right) \tag{10}
\end{equation*}
$$

- $\left\langle H^{(S)}\right\rangle$ has no periodicity with ϵ.
- This causes discontinuous at the boundary.

Therefore, apply a window function to smooth at the boundary.

$$
\begin{equation*}
W(\epsilon)=\cos ^{4} \alpha \Omega \epsilon \cosh ^{4} \alpha \Omega \epsilon \tag{11}
\end{equation*}
$$

Appendix

In practice, it is convenient to use Mino variable λ
We can show

$$
\begin{align*}
\left\langle\frac{d Q}{d \tau}\right\rangle & =-\frac{\partial Q}{\partial J_{r}}\left\langle\frac{\partial(\Sigma H)}{\partial \Gamma_{r}}\right\rangle_{\lambda}-\frac{\partial Q}{\partial J_{\theta}}\left\langle\frac{\partial(\Sigma H)}{\partial \Gamma_{\theta}}\right\rangle_{\lambda} \tag{12}\\
& =-\frac{\partial Q}{\partial J_{r}} \frac{\partial\langle\Sigma H\rangle_{\lambda}}{\partial \Delta \Gamma_{r}}-\frac{\partial Q}{\partial J_{\theta}} \frac{\partial\langle\Sigma H\rangle}{\partial \Delta \Gamma_{\theta}} \tag{13}\\
\Gamma & =\Upsilon \lambda+\Delta \Gamma
\end{align*}
$$

To obtain the evolution of the orbital elements, we have to calculate $\left\langle\Sigma H^{\text {sym }}\right\rangle_{\lambda}$

実装 5：正則化（振動の原因）

－before averaging $H_{n, m}-H_{n, m}^{(S)}$

Figure 2：$n=3$ に固定し，横軸 λ（時間）。青が

- $\lambda=1.1,3.5$ に m を変えたときの振動が見られる
- この時刻は $r-\theta$ が交差する時刻に対応

実装 3：detail of WKB

mode funcion $R(r)$ follows the equation below．

$$
\begin{align*}
& -\mathcal{R}^{\prime \prime}+\left[\frac{\lambda}{\Delta}-U(r)+\frac{1}{4}\left(\frac{\Delta^{\prime}}{\Delta}\right)^{2}+\frac{1}{2}\left(\frac{\Delta^{\prime}}{\Delta}\right)^{\prime}\right] \mathcal{R}=0 \tag{16}\\
& \mathcal{R}=R \sqrt{\Delta} \tag{17}\\
& U(r)=\frac{1}{\Delta} \frac{\omega^{2}\left(r^{2}+a^{2}\right)^{2}-4 r a m \omega+m^{2} a^{2}}{\Delta}-\omega^{2} a^{2} \tag{18}\\
& \lambda=l(l+1)+\ldots \tag{19}
\end{align*}
$$

l, λ dominates for large l

R の WKB 近似（リーディング）

$$
R_{\text {in } / \mathrm{up}} \approx\left(\frac{1}{l(l+1) \Delta}\right)^{\frac{1}{4}} \exp \left(\pm \sqrt{l(l+1)} \int^{r} \sqrt{\frac{1}{\Delta}} d r\right)
$$

radial part of green function

radial part is

$$
\begin{equation*}
R\left(r, r^{\prime}\right)=\frac{1}{W}\left(R_{\mathrm{in}}(r) R_{\mathrm{up}}\left(r^{\prime}\right) U\left(r^{\prime}-r\right)+R_{\mathrm{in}}\left(r^{\prime}\right) R_{\mathrm{up}}(r) U\left(r-r^{\prime}\right)\right) \tag{22}
\end{equation*}
$$

W is Wronskian.

Figure 3: y-axis Radial, x-axis $r^{\prime}, r=5.64$

実装 3：angle WKB

同様に θ のモード関数 $S_{\omega, l, m}$ もWKB 近似して
k は規格化定数

実装 3:approximation of green function

To combine these WKB-approximated mode functions,

$$
\begin{aligned}
G\left(x(\tau), x\left(\tau^{\prime}\right)\right)= & f(x(\tau)) f\left(x\left(\tau^{\prime}\right)\right) \cos (\sqrt{l(l+1) \theta}) \cos \left(\sqrt{l(l+1) \theta^{\prime}}\right. \\
& \exp \left[-\sqrt{l(l+1)}\left|\int_{r(\tau)}^{r\left(\tau^{\prime}\right)} \frac{1}{\sqrt{\Delta}} d r\right|\right]
\end{aligned}
$$

Another Approximation

For large l, large $r-r^{\prime}$ is decaying $\rightarrow \tau \sim \tau^{\prime}$

$$
\delta \tau=\tau^{\prime}-\tau \ll \tau
$$

$$
\begin{align*}
& \int_{r(\tau)}^{r\left(\tau^{\prime}\right)} \frac{1}{\sqrt{\Delta}} d r \sim \frac{\dot{r}}{\sqrt{\Delta}} \delta \tau \tag{24}\\
& G(\tau, \tau+\delta \tau) \sim\left[f(x(\tau))^{2}+f^{\prime} \delta \tau\right] \mathrm{e}^{-\sqrt{l(l+1)} \frac{\dot{r}}{\sqrt{\Delta}} \delta \tau} \tag{25}
\end{align*}
$$

$\mathbf{Y}^{\mathrm{Pr}} \mathbf{P p}$ this, we can integrate over $\tau^{\prime}=\delta \tau$ explicitly.

実装 3:Result

$$
\begin{align*}
H_{n, l, m}(\tau) & =\frac{1}{l(l+1)} \int d \tau f(\tau)^{2} g(\tau) \cos ^{2}[\sqrt{l(l+1)} \theta(\tau)] \tag{26}\\
& =f(\tau)^{2} g(\tau) \frac{1}{2}(1+\cos [2 \sqrt{l(l+1)} \theta(\tau)]) \tag{27}\\
H_{n, l, m}(\tau) & =H_{n, l, m}^{\operatorname{avr}}(\tau)+H_{n, l, m}^{\mathrm{osc}}(\tau) \tag{28}
\end{align*}
$$

- H can be decomposed into not-oscilating avaraged part $H_{n, l, m}^{\text {avr }}(\tau)$ and oscilating part $H_{n, l, m}^{\text {osc }}(\tau)$
- $H_{n, l, m}^{\text {osc }}(\tau)$ is the cause of oscilation.

実装 3: Result(numerical)

$$
\begin{equation*}
H(x(\tau))=\int d \delta \tau G(x(\tau), x(\tau+\delta \tau)) \tag{29}
\end{equation*}
$$

Is the approximation correct?

Figure 5: y -axis $\langle H\rangle_{n, l, m}, \mathrm{x}$-axis λ, Blue : numerical, Orange : WKB

実装 3: cause of l-oscilation

$H_{n, l, m}^{\text {osc }}(x(\tau))$ is the cause of l-oscilation
stationary approximation

$$
\begin{aligned}
H_{n, l, m}^{\mathrm{osc}}(x(\tau)) & =(x(\tau)) \cos [\sqrt{l(l+1)} \theta(\tau)] \\
& \left.\simeq f(x(\tau)) \cos \left[\sqrt{l(l+1)}\left(\theta\left(\tau_{0}\right)+\ddot{\theta}\left(\tau_{0}\right) \frac{\tau^{2}}{2}\right)\right] 33\right)
\end{aligned}
$$

- τ_{0} is the stationary point.

$$
\begin{equation*}
\left\langle H_{n, l, m}^{\mathrm{osc}}\right\rangle \simeq F(x(\tau)) \cos \left[2 \sqrt{l(l+1)} \theta\left(\tau_{0}\right)-\frac{\pi}{4}\right] \tag{31}
\end{equation*}
$$

This is the cause of l-oscilation

