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Some open questions

* Why does the merger signal look so simple?

* What are the imprints of nonlinearities? (Nonlinear relative to
what?)

* Is it possible to rigorously understand connections between
geometric, linear, nonlinear and non-stationary effects?

* Are QNMs useful as a spatial basis in non-QNM scenarios? (i.e.
are QNMs broadly useful as special functions?)
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My premise

“ Qur ability to answer these questions is limited by gaps in our
understanding of single BH perturbation theory.

+ We can do better:

* We can better understand the spheroidal nature of
gravitational waves during ringdown, and perhaps beyond
(completeness and bi-orthogonality)

* We can better understand the polynomial nature of
“overtones” (focus this talk)
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T'his talk: we can better represent numerical GW's

Spherical multipole moment
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arXiv:2006.11449 arXiv:2206.15246
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This talk: we can more deeply understand (QNM “overtones™
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This talk: we can more deeply understand (QNM “overtones™

+ Development of “new” class of

polynomials suited to the
QNM problem

+ Explicit orthogonality of the

homogeneous solutions (for
fixed frequency)

+ much fun for the future ...

London+Gurevich (In prep.)
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A spheroidal picture
for GWs from arbitrary sources

arXiv:2006.11449
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+ Are the spheroidal harmonics orthogonal in
some way? Yes

+ Are the spheroidal harmonics for QNMs
complete? Yes

+ (an spheroidal harmonics be thought of as
useful special functions for GWs? Probably



T'he hard parts and their solutions

The hard parts
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Some intuition about Adjoint-Spheroidal Harmonics

~ Example “small spin” expansion for term-by-term comparison:
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Example applications: Extreme Mass-Ratio Binary
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Example applications: Comparable Mass-Ratio Binary
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An exact tri-diadonalization

of Teukolsky’s radial equation for QNMs

papers in progress
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A purely “spectral” approach
to Teukolsky’s radial equation for QNMs




Some quirks of the radial problem

* Many studies apply special functions from other problems. Here
we focus on and develop special functions motivated directly by
Teukolsky’s radial problem

* We will draw as much as possible from Sturm-Liouville theory:.
For this, a suitable coordinate choice is essential

* For QNMSs, we are interested in the “exterior problem” — i.e.
spacetime between the event horizon and spatial infinity
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L,.R(r) = AR(r)

For QNMs, we seek to solve an eigenvalue problem,
where the eigenvalue is the separation constant.

Teukolsky’s radial equation  Use fractional radial coord
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L, = (Ao+7rA;+ (Agr)? + —— 4 5
T — T _ r— Ty

+ (A5 +Agr) 0, + (r—r_)(r—1y)0:

The related differential operator is not well formatted for the exterior problem ....

Teukolsky’s radial equation = Use fractional radial coord
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One approach taken by Leaver in 1985 was to use what I'll call a “fractional
radial coordinate”

ukolsky’s radial equation = Use fractional radial coordinates Apply ONM boundary cc
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From here we can apply the QNM boundary conditions, which amount to a
similarity transformation of the problem ...

ctional radial coordinates  Apply ONM boundary conditions Study ditterential pa
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Le = (Co+Ci(1-¢))
+ (Ca + C3(1 = &) + Ca(1 = €)7) 0e + (€ — 1)%07

The resulting differential operator has a regular potential, and its second derivative
coefficient simplifies boundary condition requirements of Sturm-Liouville theory

ctional radial coordinates  Apply ONM boundary conditions Study ditterential pa
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1

(a|b) = [ a(&)b(&) Bo(1—¢)Brere de

0

Further, we can use the transformed differential operator to construct a
scalar product (symmetric bilinear form) (Green+) Evaluation scalar
products is possible ...

ctional radial coordinates  Apply ONM boundary conditions Study ditterential pa
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Le = (Co+Ci(l-¢)) + D

Key idea: If there exist a class of polynomials are eigenfunctions of D¢
then they would be extremely well positioned to simplify the determination
of solutions to the physical problem

ONM boundary conditions Study the differential part Confluent Heun polync
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De ynk(§) = [Ank —n(n —14Cy)(1 = &) | ynr(§)

[t turns that that polynomial solutions require a somewhat generalized
eigenvalue relationship. Confluent Heun polynomials are the result ...

dy the differential part Confluent Heun polynomials  Orthogonality at fixed pol
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Using the scalar product, one can show orthogonally between polynomials of fixed order

nt Heun polynomials Orthogonality at fixed polynomial order Behavior of eigen

29



250 o + Dominant eigenvalues are
' O . . .
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Since the polynomials are “non-classical”, they are not sufficient to simplify the physical
problem. It happens that this is not a dead end ....

- at fixed polynomial order Behavior of eigenvalues Develop orthonormal sec
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We have a multitude of options ...

“Canonical construction” (novel)

Gram Schmidt ...

All have three term recursion

havior of eigenvalues Develop orthonormal sequence Apply to the radial equa
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Le f(E) = Af(E)
f(€> — Z;O:() Cn un(§>

Hermitian nature of operator

three-term recursion of
polynomials

orthogonality polynomials

O 2 4 o 38 10 12 14 1o
T

lop orthogonal sequence Apply to the radial equation
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(¢,m,n)=(6,1,3), a=0.700000

200-
5 ® from angular eigen-problem
O from radial eigen-problem
150-
Radial and angular equations
: 100" have separate eigenvalue problems.
<
9 0. + The QNMs are determined when
the eigenvalues coincide.
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Maybe 1n Singapore ...

+ A few papers published (all in
prep now)

+ Various comparisons with other
methods ...

+ Better analytic understanding of R

confluent Heun polynomials

+ Better understanding of our
orthogonal polynomials

+ Applications to non-QNM
scenarios? ...

London+Gurevich (In prep.)
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