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• It is an interesting property of the system that a Hamiltonian 
formulation exists at all. 

• Makes it easier to find gauge invariant quantities.

• Allows a simple derivation of the 1st law of binary black hole 
mechanics. 

• Makes comparisons with other approximations easier. 

Why is a Hamiltonian description useful?
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• Spin effects have been detected at LIGO. 

• Spin of the secondary will be important for LISA waveforms.
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1st order conservative self-force µ𝜀 1 arXiv:2205.01667
(Blanco, Flanagan)

✓

2nd order conservative self-force µ𝜀2 𝜀 ? A bit…

Leading Spin-Curvature coupling ൗ𝑆 𝑀~µε 1 arXiv:1808.06582
(Witzany et al.)

✓
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2 𝜀 arXiv:1601.07529
(Vines et al.)
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• We can go to a submanifold where the Casimirs are fixed.

• We get a 12D phase space with nondegenerate symplectic form.
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spinning test particle
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𝐻0 𝑥, 𝜋, 𝑆 = − −𝑔𝛼𝛽p𝛼p𝛽

• π𝛼 is the momentum canonically conjugated to 𝑥.

• 𝑆𝐴𝐵 = 𝑒𝜇
𝐴𝑒𝑣

𝐵𝑆𝜇𝑣 is the spin tensor in orthonormal basis 𝑒𝐴
𝛼. 

• 𝜔𝜇𝐴𝐵 = 𝑒𝐴𝛼∇𝜇𝑒𝐵
𝛼   is the spin connection.

p𝛼 = π𝛼 +
1

2
𝜔𝛼𝐴𝐵𝑆

𝐴𝐵



Conservative Effect Interaction 
Energy

Accumulated 
Phase Shift 

after inspiral

Is it Hamiltonian? So far…

Geodesic motion µ ൗ1 𝜀 ✓ ✓

1st order conservative self-force µ𝜀 1 arXiv:2205.01667
(Blanco, Flanagan)

2nd order conservative self-force µ𝜀2 𝜀 ?

Leading Spin-Curvature coupling ൗ𝑆 𝑀~µε 1 arXiv:1808.06582
(Witzany et al.)

✓

Subleading Spin-Curvature coupling ൗ𝑆2
µ𝑀2 ~µ𝜀

2 𝜀 arXiv:1601.07529
(Vines et al.)

Spin induced 1st  order conservative 
self-force and self-torque

ൗµ𝑆
𝑀2 ~µ𝜀

2 𝜀 arXiv:2302.10233
(Blanco, Flanagan)

What do we have so far?
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p𝛼 = π𝛼 +
1

2
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Replace perturbed metric in test motion Hamiltonian

The metric perturbation ℎ𝛼𝛽 is sourced by the particle’s mass and spin

ℎ𝛼𝛽 ∝ 𝑂(𝑚) + 𝑂(𝑆)

This doesn’t create a Hamiltonian! There’s still the extra dependence on initial 
condition 𝑄’. It’s a pseudo-Hamiltonian.
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The pseudo-Hamiltonian is

𝓗 𝑥,𝜋, 𝑆; 𝑄′ = 𝐻0 𝑥, 𝜋, 𝑆 +𝓗(m) 𝑥, 𝜋, 𝑆; 𝑄′ +𝓗(𝑆) 𝑥, 𝜋, 𝑆; 𝑄′

• O(mS)
• Responsible for Spin induced  1st 

order Self-Force

• O(𝑚2)
• Responsible for 1st order Self-Force 

and spin-induced self-torque

• O(m)+O(S)
• Responsible Linear-in-Spin MPD 

equations (geodesic + Spin-
Curvature Coupling)

This pseudo-Hamiltonian description is equivalent to a Hamiltonian system with 
a known Hamiltonian function and Symplectic form!

New Result!

arXiv:2302.10233
(Blanco, Flanagan)

Pseudo-Hamiltonian description 
of self-force for a spinning particle



Part III: Second Order Dynamics



What about the 2nd order Self-Force?
(Work in progresss with A. Pound and A. Harte)



• Take geodesic Hamiltonian

𝐻0(𝑄) = − −𝑔𝛼𝛽(𝑥)𝑝𝛼𝑝𝛽
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• And replace metric by perturbed metric

𝓗 𝑄,𝑄′ = − 𝑔𝛼𝛽 𝑥 + 𝜺 ℎ𝛼𝛽
(1)
(𝑥, 𝑄′) + 𝜺2ℎ𝛼𝛽

(2)
(𝑥, 𝑄′)

−1
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• And replace metric by perturbed metric

𝓗 𝑄,𝑄′ = − 𝑔𝛼𝛽 𝑥 + 𝜺 ℎ𝛼𝛽
(1)
(𝑥, 𝑄′) + 𝜺2ℎ𝛼𝛽

(2)
(𝑥, 𝑄′)

−1
𝑝𝛼𝑝𝛽

• Take geodesic Hamiltonian

𝐻0(𝑄) = − −𝑔𝛼𝛽(𝑥)𝑝𝛼𝑝𝛽

What about the 2nd order Self-Force?
(Work in progresss with A. Pound and A. Harte)

• Can this pseudo-Hamiltonian be written as integrals of symmetric 2-point 
and 3-point functions?



1st Order Analysis
arXiv:2205.01667
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1st Order Analysis

First order correction is

ℎ𝛼𝛽
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1st Order Analysis

At first order, plugging ℎ𝛼𝛽
1

 into the geodesic Hamiltonian we get 
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𝑝𝛼𝑝𝛽𝑝𝜌

′
𝑝𝜎

′

−𝑔𝜇ν𝑝𝜇𝑝ν −𝑔𝜇′ν′𝑝𝜇
′𝑝ν′

First order correction is
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1
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1st Order Analysis

It’s symmetric!

At first order, plugging ℎ𝛼𝛽
1

 into the geodesic Hamiltonian we get 

𝓗 𝑄;𝑄′ = 𝐻0 𝑄 + 𝜺න𝑑𝜏′𝐺𝛼𝛽𝜌′𝜎′ 𝑥, 𝑥′
𝑝𝛼𝑝𝛽𝑝𝜌

′
𝑝𝜎

′

−𝑔𝜇ν𝑝𝜇𝑝ν −𝑔𝜇′ν′𝑝𝜇
′𝑝ν′

First order correction is

ℎ𝛼𝛽
1

𝑥; 𝑄′ = න𝑑𝜏′𝐺𝛼𝛽𝜌′𝜎′ 𝑥, 𝑥′
𝑝𝜌

′
𝑝𝜎

′

−𝑔𝜇ν𝑝
𝜇′𝑝ν

′
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Second Order: Issues to be resolved…



• Is the 3-point function 𝒢III we get from ℎ𝛼𝛽
2

 symmetric? 
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• ℎ𝛼𝛽
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is sourced by 𝛿2𝐺𝛼𝛽 ℎ(1), ℎ(1) … Should we include                          
dissipative × dissipative contributions? Only conservative ×  conservative?  

Second Order: Issues to be resolved…



• Is the 3-point function 𝒢III we get from ℎ𝛼𝛽
2

 symmetric? 

• ℎ𝛼𝛽
2

is sourced by 𝛿2𝐺𝛼𝛽 ℎ(1), ℎ(1) … Should we include                          
dissipative × dissipative contributions? Only conservative ×  conservative?  

• Picking the conservative piece of ℎ𝛼𝛽
1

means that there are standing waves 
at infinity. At second order, this creates an infrared divergence. How do we 
fix this? (A. Pound & J. Lewis are working on this) 

Second Order: Issues to be resolved…



Thanks for listening! 
Any questions?

Conservative Effect Interaction 
Energy

Accumulated 
Phase Shift 

after inspiral

Is it Hamiltonian? In This 
talk!

Geodesic motion µ ൗ1 𝜀 ✓ ✓

1st order conservative self-force µ𝜀 1 arXiv:2205.01667
(Blanco, Flanagan)

✓

2nd order conservative self-force µ𝜀2 𝜀 ? ?
Leading Spin-Curvature coupling ൗ𝑆 𝑀~µε 1 arXiv:1808.06582

(Witzany et al.)
✓

Subleading Spin-Curvature coupling ൗ𝑆2
µ𝑀2 ~µ𝜀

2 𝜀 arXiv:1601.07529
(Vines et al.)

Spin induced 1st  order conservative 
self-force and self-torque

ൗµ𝑆
𝑀2 ~µ𝜀

2 𝜀 arXiv:2302.10233
(Blanco, Flanagan)

✓
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