THE EXISTENCE OF A HAMILTONIAN FORMULATION OF THE CONSERVATIVE SELF-FORCE: PROGRESS AND CHALLENGES

Francisco Blanco & Eanna Flanagan

Physics Department, Cornell University CAPRA Meeting, July, 2023

State of the two-body problem

State of the two-body problem

State of the two-body problem

Post-Newtonian expansion

Yes (Up to some order)

Post-Newtonian expansion

Yes (Up to some order)

Post-Minkowskian expansion

Post-Newtonian expansion

Post-Minkowskian expansion Yes (Up to some order)

Effective one-body formalism

Effective one-body formalism Assumed

Post-Minkowskian expansion

Yes (Up to some order)

Effective one-body formalism Assumed

Small mass-ratio expansion

- Yes at zeroth order.
- Yes at 1st order for spinless secondaries.

- Yes at zeroth order.
- Yes at 1st order for spinless secondaries.
- Can we include spin?
- Can we go to 2nd order?

• It is an interesting property of the system that a Hamiltonian formulation exists at all.

- It is an interesting property of the system that a Hamiltonian formulation exists at all.
- Makes it easier to find gauge invariant quantities.

- It is an interesting property of the system that a Hamiltonian formulation exists at all.
- Makes it easier to find gauge invariant quantities.
- Allows a simple derivation of the 1st law of binary black hole mechanics.

- It is an interesting property of the system that a Hamiltonian formulation exists at all.
- Makes it easier to find gauge invariant quantities.
- Allows a simple derivation of the 1st law of binary black hole mechanics.
- Makes comparisons with other approximations easier.

Part I: General Strategy for proving systems are Hamiltonian

Hamiltonian:

$$\frac{dQ^A}{d\lambda} = \Omega_0^{AB} \frac{\partial}{\partial Q^B} H(Q)$$

$$\frac{dQ^{A}}{d\lambda} = \Omega_{0}^{AB} \frac{\partial}{\partial Q^{B}} \mathcal{H}(Q, Q')|_{Q=Q'}$$

$$Q^{A} = (x^{\mu}, p_{\mu})$$

Hamiltonian:
$$\frac{dQ^{A}}{d\lambda} = \Omega_{0}^{AB} \frac{\partial}{\partial Q^{B}} H(Q)$$

$$\frac{dQ^A}{d\lambda} = \Omega_0^{AB} \frac{\partial}{\partial Q^B} \mathcal{H}(Q, Q')|_{Q=Q'}$$

$$Q^{A} = (x^{\mu}, p_{\mu}) \qquad \Omega_{0} = dp_{\mu} \wedge dx^{\mu}$$

miltonian:
$$\frac{dQ^{A}}{d\lambda} = \Omega_{0}^{AB} \frac{\partial}{\partial Q^{B}} H(Q)$$

Har

$$\frac{dQ^A}{d\lambda} = \Omega_0^{AB} \frac{\partial}{\partial Q^B} \mathcal{H}(Q, Q')|_{Q=Q'}$$

$$\frac{dQ^A}{d\lambda} = \Omega_0^{AB} \frac{\partial}{\partial Q^B} \mathcal{H}(Q, Q')|_{Q=Q'}$$

$$\frac{dQ^{A}}{d\lambda} = \Omega_{0}^{AB} \frac{\partial}{\partial Q^{B}} \mathcal{H}(Q, Q')|_{Q=Q'}$$
Pseudo-Hamiltonian

$$\mathcal{H} = H_0(Q) + \varepsilon \int d\tau' \mathcal{G}_{\mathrm{II}}[Q, \varphi_{\tau'}(Q')] + \varepsilon^2 \int d\tau' d\tau'' \mathcal{G}_{\mathrm{III}}[Q, \varphi_{\tau'}(Q'), \varphi_{\tau''}(Q')]$$

$$\mathcal{H} = H_0(Q) + \varepsilon \int d\tau' \mathcal{G}_{\text{II}}[Q, \varphi_{\tau'}(Q')] + \varepsilon^2 \int d\tau' d\tau'' \mathcal{G}_{\text{III}}[Q, \varphi_{\tau'}(Q'), \varphi_{\tau''}(Q')]$$

$$\text{Symmetric} \\ \text{2-point function} \\ \text{Pseudo-Hamiltonian flow} \\ \text{with initial condition Q'}$$

$$\mathcal{H} = H_0(Q) + \varepsilon \int d\tau' \mathcal{G}_{\text{II}}[Q, \varphi_{\tau'}(Q')] + \varepsilon^2 \int d\tau' d\tau'' \mathcal{G}_{\text{III}}[Q, \varphi_{\tau'}(Q'), \varphi_{\tau''}(Q')]$$

$$\begin{array}{c} \text{Symmetric} \\ \text{2-point function} \end{array} \qquad \begin{array}{c} \text{Pseudo-Hamiltonian flow} \\ \text{with initial condition } Q' \end{array} \qquad \begin{array}{c} \text{Symmetric} \\ \text{3-point function} \end{array}$$

When the Pseudo-Hamiltonian has the form

Then it can be proved that motion admits a Hamiltonian description:
Certain pseudo-Hamiltonian systems are Hamiltonian

When the Pseudo-Hamiltonian has the form

Then it can be proved that motion admits a Hamiltonian description:

• Test particle motion is described by a Hamiltonian $H_0(Q)$ on a metric $g_{\alpha\beta}$ with phase space variable Q

$$H_0(Q) = -\sqrt{g^{\alpha\beta}(x)p_{\alpha}p_{\beta}}$$

• Test particle motion is described by a Hamiltonian $H_0(Q)$ on a metric $g_{\alpha\beta}$ with phase space variable Q

$$H_0(Q) = -\sqrt{g^{\alpha\beta}(x)p_{\alpha}p_{\beta}}$$

• The motion under the influence of the self-force can be described by the same Hamiltonian $H_0(Q)$ on a perturbed metric $g_{\alpha\beta} + h_{\alpha\beta}$ where $h_{\alpha\beta}$ is sourced by the particle's own worldline (Detweiller & Whiting, 2003)

$$\mathcal{H}(Q,Q') = -\sqrt{[g^{\alpha\beta}(x) - h^{\alpha\beta}(x,Q')]p_{\alpha}p_{\beta}}$$

• Test particle motion is described by a Hamiltonian $H_0(Q)$ on a metric $g_{\alpha\beta}$ with phase space variable Q

$$H_0(Q) = -\sqrt{g^{\alpha\beta}(x)p_{\alpha}p_{\beta}}$$

• The motion under the influence of the self-force can be described by the same Hamiltonian $H_0(Q)$ on a perturbed metric $g_{\alpha\beta} + h_{\alpha\beta}$ where $h_{\alpha\beta}$ is sourced by the particle's own worldline (Detweiller & Whiting, 2003)

$$\mathcal{H}(Q,Q') = -\sqrt{[g^{\alpha\beta}(x) - h^{\alpha\beta}(x,Q')]p_{\alpha}p_{\beta}}$$

 This pseudo-Hamiltonian, when expanded to linear order, can be expressed as an integral involving a symmetric 2-point function, showing the system is Hamiltonian.

• Test particle motion is described by a Hamiltonian $H_0(Q)$ on a metric $g_{\alpha\beta}$ with phase space variable Q

$$H_0(Q) = -\sqrt{g^{\alpha\beta}(x)p_{\alpha}p_{\beta}}$$

• The motion under the influence of the self-force can be described by the same Hamiltonian $H_0(Q)$ on a perturbed metric $g_{\alpha\beta} + h_{\alpha\beta}$ where $h_{\alpha\beta}$ is sourced by the particle's own worldline (Detweiller & Whiting, 2003)

$$\mathcal{H}(Q,Q') = -\sqrt{[g^{\alpha\beta}(x) - h^{\alpha\beta}(x,Q')]p_{\alpha}p_{\beta}}$$

arXiv:2205.01667 (Blanco, Flanagan)

 This pseudo-Hamiltonian, when expanded to linear order, can be expressed as an integral involving a symmetric 2-point function, showing the system is Hamiltonian. Part 2: Spin Effects

Spin in the 2-body problem

Spin in the 2-body problem

- Spin effects have been detected at LIGO.
- Spin of the secondary will be important for LISA waveforms.

Scaling of conservative effects ($\varepsilon = \frac{\mu}{M}$)

Conservative Effect	Interaction Energy	Accumulated Phase Shift after inspiral	Is it Hamiltonian?	In This talk!
Geodesic motion	μ	$1/_{\varepsilon}$		
1 st order conservative self-force	με	1		
2 nd order conservative self-force	$\mu \epsilon^2$	ε		
Leading Spin-Curvature coupling	^S / _M ~με	1		
Subleading Spin-Curvature coupling	$S^2/_{\mu M^2} \sim \mu \varepsilon^2$	ε		
Spin induced 1 st order conservative self-force and self-torque	$\mu S/_{M^2} \sim \mu \varepsilon^2$	Е		

Scaling of conservative effects ($\varepsilon = \frac{\mu}{M}$)

Conservative Effect	Interaction Energy	Accumulated Phase Shift after inspiral	Is it Hamiltonian?	In This talk!
Geodesic motion	μ	$1/_{\varepsilon}$	\checkmark	
1 st order conservative self-force	με	1	arXiv:2205.01667 (Blanco, Flanagan)	
2 nd order conservative self-force	$\mu \epsilon^2$	Е	?	
Leading Spin-Curvature coupling	^S / _M ~με	1	arXiv:1808.06582 (Witzany et al.)	
Subleading Spin-Curvature coupling	$S^2/_{\mu M^2} \sim \mu \varepsilon^2$	ε	arXiv:1601.07529 (Vines et al.)	
Spin induced 1 st order conservative self-force and self-torque	$^{\mu S}/_{M^2} \sim \mu \varepsilon^2$	ε	arXiv:2302.10233 (Blanco, Flanagan)	

Scaling of conservative effects ($\varepsilon = \frac{\mu}{M}$)

Conservative Effect	Interaction Energy	Accumulated Phase Shift after inspiral	Is it Hamiltonian?	In This talk!
Geodesic motion	μ	$1/_{\varepsilon}$	\checkmark	\checkmark
1 st order conservative self-force	με	1	arXiv:2205.01667 (Blanco, Flanagan)	\checkmark
2 nd order conservative self-force	$\mu \epsilon^2$	Е	?	A bit
Leading Spin-Curvature coupling	^S / _M ~με	1	arXiv:1808.06582 (Witzany et al.)	\checkmark
Subleading Spin-Curvature coupling	$S^2/_{\mu M^2} \sim \mu \varepsilon^2$	Е	arXiv:1601.07529 (Vines et al.)	
Spin induced 1 st order conservative self-force and self-torque	$\mu S/_{M^2} \sim \mu \varepsilon^2$	ε	arXiv:2302.10233 (Blanco, Flanagan)	\checkmark

Dynamics of test spinning particles

Dynamics of test spinning particles

<u>Mathison-Papapertrou-Dixon</u> (MPD) equations

 $\begin{cases} \frac{dx^{\mu}}{d\tau} = u^{\mu} \\ \frac{Dp^{\mu}}{d\tau} = -\frac{1}{2} R^{\mu}_{\ \nu\alpha\beta} u^{\nu} S^{\alpha\beta} \\ \frac{DS^{\alpha\beta}}{d\tau} = 2p^{[\alpha} u^{\beta]} \end{cases}$

Dynamics of test spinning particles

<u>Mathison-Papapertrou-Dixon</u> (MPD) equations

 $\begin{cases} \frac{dx^{\mu}}{d\tau} = u^{\mu} \\ \frac{Dp^{\mu}}{d\tau} = -\frac{1}{2} R^{\mu}_{\ \nu\alpha\beta} u^{\nu} S^{\alpha\beta} \\ \frac{DS^{\alpha\beta}}{d\tau} = 2p^{[\alpha} u^{\beta]} \end{cases}$

Spin supplementary condition (SSC) $\rightarrow p_{\alpha} S^{\alpha\beta}=0$

Applying spin supplementary condition (and keeping linear terms in spin only)

Applying spin supplementary condition (and keeping linear terms in spin only)

$$\begin{cases} \frac{dx^{\alpha}}{d\tau} = \frac{1}{\mu} p^{\alpha} + O(S^{4}) \\ \frac{Dp^{\mu}}{d\tau} = -\frac{1}{2\mu} R^{\mu}{}_{\nu\alpha\beta} p^{\nu} S^{\alpha\beta} + O(S^{3}) \\ \frac{DS^{\alpha\beta}}{d\tau} = 0 + O(S^{2}) \\ \mu = \sqrt{-g^{\alpha\beta} p_{\alpha} p_{\beta}} + O(S^{2}) \end{cases}$$

Applying spin supplementary condition (and keeping linear terms in spin only)

 $(x^{\alpha}, p_{\alpha}, S^{\alpha\beta}) \longrightarrow 14D$ phase space

$$\begin{cases} \frac{dx^{\alpha}}{d\tau} = \frac{1}{\mu}p^{\alpha} + O(S^{4}) \\ \frac{Dp^{\mu}}{d\tau} = -\frac{1}{2\mu}R^{\mu}{}_{\nu\alpha\beta}p^{\nu}S^{\alpha\beta} + O(S^{3}) \\ \frac{DS^{\alpha\beta}}{d\tau} = 0 + O(S^{2}) \\ \mu = \sqrt{-g^{\alpha\beta}p_{\alpha}p_{\beta}} + O(S^{2}) \end{cases}$$

• There exists a Hamiltonian H(x, p, s) and Poisson Brackets { , } that reproduce the Linear-in-Spin MPD equations.

- There exists a Hamiltonian H(x, p, s) and Poisson Brackets { , } that reproduce the Linear-in-Spin MPD equations.
- The Poisson brackets are degenerate due to the presence of two Casimir invariants S_0^2 and S_*^2

$$\begin{cases} S_{\circ}^{2} = \frac{1}{2} \eta_{\mu\rho} \eta_{\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \\ S_{*}^{2} = \frac{1}{8} \epsilon_{\mu\rho\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \end{cases}$$

- There exists a Hamiltonian H(x, p, s) and Poisson Brackets { , } that reproduce the Linear-in-Spin MPD equations.
- The Poisson brackets are degenerate due to the presence of two Casimir invariants S_0^2 and S_*^2

$$\begin{cases} S_{\circ}^{2} = \frac{1}{2} \eta_{\mu\rho} \eta_{\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \\ S_{*}^{2} = \frac{1}{8} \epsilon_{\mu\rho\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \end{cases}$$

• We can go to a submanifold where the Casimirs are fixed.

- There exists a Hamiltonian H(x, p, s) and Poisson Brackets { , } that reproduce the Linear-in-Spin MPD equations.
- The Poisson brackets are degenerate due to the presence of two Casimir invariants S_0^2 and S_*^2

$$\begin{cases} S_{\circ}^{2} = \frac{1}{2} \eta_{\mu\rho} \eta_{\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \\ S_{*}^{2} = \frac{1}{8} \epsilon_{\mu\rho\alpha\beta} S^{\mu\rho} S^{\alpha\beta} \end{cases}$$

- We can go to a submanifold where the Casimirs are fixed.
- We get a 12D phase space with nondegenerate symplectic form.

Hamiltonian for spinning test particle

Hamiltonian for spinning test particle

$$H_0(x,\pi,S) = -\sqrt{-g^{\alpha\beta}p_{\alpha}p_{\beta}}$$
$$p_{\alpha} = \pi_{\alpha} + \frac{1}{2}\omega_{\alpha AB}S^{AB}$$

Hamiltonian for spinning test particle

$$H_0(x, \pi, S) = -\sqrt{-g^{\alpha\beta} p_{\alpha} p_{\beta}}$$
$$p_{\alpha} = \pi_{\alpha} + \frac{1}{2} \omega_{\alpha AB} S^{AB}$$

- π_{α} is the momentum canonically conjugated to x.
- $S^{AB} = e^A_\mu e^B_\nu S^{\mu\nu}$ is the spin tensor in orthonormal basis e^{α}_A .
- $\omega_{\mu AB} = e_{A\alpha} \nabla_{\mu} e_B^{\alpha}$ is the spin connection.

What do we have so far?

Conservative Effect	Interaction Energy	Accumulated Phase Shift after inspiral	Is it Hamiltonian?	So far
Geodesic motion	μ	$1/\varepsilon$	\checkmark	\checkmark
1 st order conservative self-force	με	1	arXiv:2205.01667 (Blanco, Flanagan)	
2 nd order conservative self-force	$\mu \epsilon^2$	Е	?	
Leading Spin-Curvature coupling	^S / _M ~με	1	arXiv:1808.06582 (Witzany et al.)	✓
Subleading Spin-Curvature coupling	$S^2/_{\mu M^2} \sim \mu \varepsilon^2$	Е	arXiv:1601.07529 (Vines et al.)	
Spin induced 1 st order conservative self-force and self-torque	$^{\mu S}/_{M^2} \sim \mu \varepsilon^2$	ε	arXiv:2302.10233 (Blanco, Flanagan)	

Replace perturbed metric in test motion Hamiltonian

Replace perturbed metric in test motion Hamiltonian

$$\mathcal{H}(Q,Q') = -\sqrt{[g^{\alpha\beta}(x) - h^{\alpha\beta}(x,Q')]} p_{\alpha} p_{\beta}$$
$$p_{\alpha} = \pi_{\alpha} + \frac{1}{2} \omega_{\alpha AB} [g+h] S^{AB}$$

Replace perturbed metric in test motion Hamiltonian

$$\mathcal{H}(Q,Q') = -\sqrt{[g^{\alpha\beta}(x) - h^{\alpha\beta}(x,Q')]p_{\alpha}p_{\beta}}$$
$$p_{\alpha} = \pi_{\alpha} + \frac{1}{2}\omega_{\alpha AB}[g+h]S^{AB}$$

The metric perturbation $h_{\alpha\beta}$ is sourced by the particle's mass and spin

 $h_{\alpha\beta} \propto O(m) + O(S)$

This doesn't create a Hamiltonian! There's still the extra dependence on initial condition Q'. It's a *pseudo-Hamiltonian*.

The pseudo-Hamiltonian is

$$\mathcal{H}(x,\pi,S;Q') = H_0(x,\pi,S) + \mathcal{H}_{(m)}(x,\pi,S;Q') + \mathcal{H}_{(S)}(x,\pi,S;Q')$$

The pseudo-Hamiltonian is

$$\mathcal{H}(x,\pi,S;Q') = H_0(x,\pi,S) + \mathcal{H}_{(\mathrm{m})}(x,\pi,S;Q') + \mathcal{H}_{(S)}(x,\pi,S;Q')$$

- O(m)+O(S)
- Responsible Linear-in-Spin MPD equations (geodesic + Spin-Curvature Coupling)

The pseudo-Hamiltonian is

Pseudo-Hamiltonian description of self-force for a spinning particle

The pseudo-Hamiltonian is

• O(mS)

 Responsible for Spin induced 1st order Self-Force

$$\mathcal{H}(x,\pi,S;Q') = H_0(x,\pi,S) + \mathcal{H}_{(m)}(x,\pi,S;Q') + \mathcal{H}_{(S)}(x,\pi,S;Q')$$

- O(m)+O(S)
- Responsible Linear-in-Spin MPD equations (geodesic + Spin-Curvature Coupling)

- O(m²)
- Responsible for 1st order Self-Force and spin-induced self-torque

Pseudo-Hamiltonian description of self-force for a spinning particle

The pseudo-Hamiltonian is

• O(mS)

 Responsible for Spin induced 1st order Self-Force

$$\mathcal{H}(x,\pi,S;Q') = H_0(x,\pi,S) + \mathcal{H}_{(m)}(x,\pi,S;Q') + \mathcal{H}_{(S)}(x,\pi,S;Q')$$

- O(m)+O(S)
- Responsible Linear-in-Spin MPD equations (geodesic + Spin-Curvature Coupling)

- O(m²)
- Responsible for 1st order Self-Force and spin-induced self-torque

New Result!

Pseudo-Hamiltonian description of self-force for a spinning particle

The pseudo-Hamiltonian is

• O(mS)

Responsible for 1st order Self-Force

and spin-induced self-torque

 Responsible for Spin induced 1st order Self-Force

$$\mathcal{H}(x,\pi,S;Q') = H_0(x,\pi,S) + \mathcal{H}_{(m)}(x,\pi,S;Q') + \mathcal{H}_{(S)}(x,\pi,S;Q')$$

 $O(m^2)$

- O(m)+O(S)
- Responsible Linear-in-Spin MPD equations (geodesic + Spin-Curvature Coupling)

New Result!

This pseudo-Hamiltonian description is equivalent to a Hamiltonian system with a known Hamiltonian function and Symplectic form!

arXiv:2302.10233 (Blanco, Flanagan) Part III: Second Order Dynamics

• Take geodesic Hamiltonian

$$H_0(Q) = -\sqrt{-g^{\alpha\beta}(x)p_\alpha p_\beta}$$

• Take geodesic Hamiltonian

$$H_0(Q) = -\sqrt{-g^{\alpha\beta}(x)p_{\alpha}p_{\beta}}$$

• And replace metric by perturbed metric

$$\mathcal{H}(Q,Q') = -\sqrt{\left[g_{\alpha\beta}\left(x\right) + \varepsilon h_{\alpha\beta}^{(1)}(x,Q') + \varepsilon^2 h_{\alpha\beta}^{(2)}(x,Q')\right]^{-1} p_{\alpha} p_{\beta}}$$

• Take geodesic Hamiltonian

$$H_0(Q) = -\sqrt{-g^{\alpha\beta}(x)p_\alpha p_\beta}$$

• And replace metric by perturbed metric

$$\mathcal{H}(Q,Q') = -\sqrt{\left[g_{\alpha\beta}\left(x\right) + \varepsilon h_{\alpha\beta}^{(1)}(x,Q') + \varepsilon^2 h_{\alpha\beta}^{(2)}(x,Q')\right]^{-1} p_{\alpha} p_{\beta}}$$

• Can this pseudo-Hamiltonian be written as integrals of symmetric 2-point and 3-point functions?

arXiv:2205.01667 (Blanco, Flanagan)

arXiv:2205.01667 (Blanco, Flanagan)

First order correction is

$$h_{\alpha\beta}^{(1)}(x;Q') = \int d\tau' G_{\alpha\beta\rho'\sigma'}[x,x'] \frac{p^{\rho'}p^{\sigma'}}{\sqrt{-g_{\mu\nu}p^{\mu'}p^{\nu'}}}$$

First order correction is

$$h_{\alpha\beta}^{(1)}(x;Q') = \int d\tau' G_{\alpha\beta\rho'\sigma'}[x,x'] \frac{p^{\rho'}p^{\sigma'}}{\sqrt{-g_{\mu\nu}p^{\mu'}p^{\nu'}}}$$

At first order, plugging $h_{\alpha\beta}^{(1)}$ into the geodesic Hamiltonian we get

$$\mathcal{H}(Q;Q') = H_0(Q) + \varepsilon \int d\tau' G_{\alpha\beta\rho'\sigma'}[x,x'] \frac{p^{\alpha}p^{\beta}p^{\rho'}p^{\sigma'}}{\sqrt{-g_{\mu\nu}p^{\mu}p^{\nu}}} \sqrt{-g_{\mu'\nu'}p^{\mu'}p^{\nu'}}$$

arXiv:2205.01667 (Blanco, Flanagan)

First order correction is

$$h_{\alpha\beta}^{(1)}(x;Q') = \int d\tau' G_{\alpha\beta\rho'\sigma'}[x,x'] \frac{p^{\rho'}p^{\sigma'}}{\sqrt{-g_{\mu\nu}p^{\mu'}p^{\nu'}}}$$

At first order, plugging $h_{\alpha\beta}^{(1)}$ into the geodesic Hamiltonian we get

$$\mathcal{H}(Q;Q') = H_0(Q) + \varepsilon \int d\tau' G_{\alpha\beta\rho'\sigma'}[x,x'] \frac{p^{\alpha}p^{\beta}p^{\rho'}p^{\sigma'}}{\sqrt{-g_{\mu\nu}p^{\mu}p^{\nu}}} \sqrt{-g_{\mu'\nu'}p^{\mu'}p^{\nu'}}$$

It's symmetric!

arXiv:2205.01667 (Blanco, Flanagan)

• Is the 3-point function \mathcal{G}_{III} we get from $h_{\alpha\beta}^{(2)}$ symmetric?

• Is the 3-point function \mathcal{G}_{III} we get from $h_{\alpha\beta}^{(2)}$ symmetric?

• $h_{\alpha\beta}^{(2)}$ is sourced by $\delta^2 G_{\alpha\beta}[h^{(1)}, h^{(1)}]$... Should we include dissipative \times dissipative contributions? Only conservative \times conservative?

• Is the 3-point function \mathcal{G}_{III} we get from $h_{\alpha\beta}^{(2)}$ symmetric?

• $h_{\alpha\beta}^{(2)}$ is sourced by $\delta^2 G_{\alpha\beta}[h^{(1)}, h^{(1)}]$... Should we include dissipative \times dissipative contributions? Only conservative \times conservative?

• Picking the conservative piece of $h_{\alpha\beta}^{(1)}$ means that there are standing waves at infinity. At second order, this creates an infrared divergence. How do we fix this? (A. Pound & J. Lewis are working on this)

Thanks for listening! Any questions?

Conservative Effect	Interaction Energy	Accumulated Phase Shift after inspiral	Is it Hamiltonian?	In This talk!
Geodesic motion	μ	$1/\varepsilon$	\checkmark	\checkmark
1 st order conservative self-force	με	1	arXiv:2205.01667 (Blanco, Flanagan)	\checkmark
2 nd order conservative self-force	$\mu \varepsilon^2$	Е	?	?
Leading Spin-Curvature coupling	^S / _M ~με	1	arXiv:1808.06582 (Witzany et al.)	√
Subleading Spin-Curvature coupling	$S^2/_{\mu M^2} \sim \mu \varepsilon^2$	Е	arXiv:1601.07529 (Vines et al.)	
Spin induced 1 st order conservative self-force and self-torque	$^{\mu S}/_{M^2} \sim \mu \varepsilon^2$	ε	arXiv:2302.10233 (Blanco, Flanagan)	\checkmark