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[Post—Newtonian expansion} Yes (Up to some order) e Yes at zeroth order

[Post—l\/linkowskian expansion} Yes (Up to some order) * Yesat 1St.order for spmless
secondaries.

[Effective one-body formalism] Assumed  Can we include spin?

 Can we go to 2nd order?

[Small mass-ratio expansion}
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Why is a Hamiltonian description useful?

* It is an interesting property of the system that a Hamiltonian
formulation exists at all.

* Makes it easier to find gauge invariant quantities.

* Allows a simple derivation of the 1%t [aw of binary black hole
mechanics.

* Makes comparisons with other approximations easier.
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0 =(x"p,)| Qo= dpyndx*|

St L0

[Hamiltonian]

Hamiltonian: — OAB
d}\ QO aQB H(Q) Evaluated at
coincidence after
taking the derivative!
dQA

0
dr _QéBaQB}[(Q Q")lo= Q'/

Pseudo-Hamiltonian:

[Pseudo—HamiItonianJ
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Certain pseudo-Hamiltonian systems
are Hamiltonian

When the Pseudo-Hamiltonian has the form

H =Ho(Q) + SfAd/T'Qn[Q, w@ + & f dT'dT"Qm&‘%'(Q'),<PT”(Q')]

Symmetric Pseudo-Hamiltonian flow { Sy'mmetric- J
2-point function with initial condition Q’ 3-point function

4 N

Hamiltonian System

H(Q) = Hy(Q) + H.(Q) + £2H,(Q)
Kﬁ(Q) = 00(Q) + £02,(Q) + gzﬁz(Q)/

Then it can be proved that motion
admits a Hamiltonian description: {
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* Test particle motion is described by a Hamiltonian Hy(Q) on a metric g,p with
phase space variable Q

Hy(Q) = — Jg“ﬁ (X)pabp

* The motion under the influence of the self-force can be described by the same
Hamiltonian Hy(Q) on a perturbed metric Jap T hap Where hyp is sourced by

the particle’s own worldline (Detweiller & Whiting, 2003)

H(Q,Q) = —\/[gaﬁ(x) — hB (x,Q")papp arXiv:2205.01667

(Blanco, Flanagan)

* This pseudo-Hamiltonian, when expanded to linear order, can be expressed as an
integral involving a symmetric 2-point function, showing the system is Hamiltonian.
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Spin in the 2-body problem

 Spin effects have been detected at LIGO.

 Spin of the secondary will be important for LISA waveformes.
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Mathison-Papapertrou-Dixon
(MPD) equations

J
([ dx™
dT - uu Spin
precession
Dp“ 1 K veoa =
= It =
< dt 2R vapth © S
aﬁ Spin-curvature force
DS = Zp[auﬁ] P t
L dt

Spin supplementary condition (SSC) — p,, sap_n
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Linear-in-Spin equations of motion

([ dx® 1
T = EP“ + 0(5*)
or R pS* + 0(S3)
Applying spin supplementary condition < dt 2U vap
(and keeping linear terms in spin only) DSaB ,
=0+ 0(S
——=0+0(5?)
\ U =J—g ﬁpap[g +0(52)

(x%, g, S*¥) — 14D phase space
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* There exists a Hamiltonian H(x, p,s) and Poisson Brackets {, } that reproduce the
Linear-in-Spin MPD equations.

* The Poisson brackets are degenerate due to the presence of two Casimir
invariants So2 and S*2

r 2 _ 1 up gap
So° = Enupnaﬂs S
S.” = §€upa35”p5

\

* We can go to a submanifold where the Casimirs are fixed.

 We get a 12D phase space with nondegenerate symplectic form. ArXiv:1808.06582

(Witzany et al.)
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Hamiltonian for spinning test particle

Hy (1, S) = — j — 9% ppg

1

Po =Ty + = Wgap

SAB
2

* 1, isthe momentum canonically conjugated to x.

» 548 = e/le]) SH is the spin tensor in orthonormal basis e

* Wyap = eAaVHeg is the spin connection.



What do we have so far?

Conservative Effect

Geodesic motion

15t order conservative self-force

2nd order conservative self-force

Leading Spin-Curvature coupling

Subleading Spin-Curvature coupling

Spin induced 1%t order conservative
self-force and self-torque

Interaction

Energy

Accumulated
Phase Shift
after inspiral

Is it Hamiltonian?

v

arXiv:2205.01667
(Blanco, Flanagan)

?

arXiv:1808.06582
(Witzany et al.)

arXiv:1601.07529
(Vines et al.)

arXiv:2302.10233
(Blanco, Flanagan)

v
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Pseudo-Hamiltonian description
of self-force for a spinning particle

Replace perturbed metric in test motion Hamiltonian

#(Q,0) = — J 9% (x) — hB (x, Q") |pabs

1
Pa = g Tt EwaAB [g + h]SAB

The metric perturbation hg is sourced by the particle’s mass and spin
hap &< O(m) + 0(S)

This doesn’t create a Hamiltonian! There’s still the extra dependence on initial
condition Q’. It’s a pseudo-Hamiltonian.
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Pseudo-Hamiltonian description
of self-force for a spinning particle

« O(mS)
e Responsible for Spin induced 15t

The pseudo-Hamiltonian is
order Self-Force

e —
H(x,m,S;Q) =Ho(x,m,5) + H ) (x, 7, S; Q) + H (5 (x,7,5; Q)

/

(s O(m)+0O(S) ) . 0(m?)
* Responsible Linear-in-Spin MPD * Responsible for 1%t order Self-Force
equations (geodesic + Spin- and spin-induced self-torque
Curvature Coupling)

‘New Result!

This pseudo-Hamiltonian description is equivalent to a Hamiltonian system with

) ) ) ] ,
a known Hamiltonian function and Symplectic form! arXiv:2302.10233

(Blanco, Flanagan)
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What about the 2"d order Self-Force?
(Work in progresss with A. Pound and A. Harte)

Take geodesic Hamiltonian

Ho(Q) = — J — 9% (Opaps

And replace metric by perturbed metric

-1
H(Q,Q) = —J 9ap (0 + £ RS0 (x, Q) + 2R (x, Q)| papp

Can this pseudo-Hamiltonian be written as integrals of symmetric 2-point
and 3-point functions?
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1%t Order Analysis lanco Flansear)

First order correction is

pP p”

\/_gu,vp”,pv’

hey (6 Q") = j dT' G o 10 [, %]

At first order, plugging hélﬁ) into the geodesic Hamiltonian we get

pepPpP po

g‘f(Q, Q’) = HO(Q) + 8] dT’Gaﬂplo.l [X,X’]

\ N J —gurvrp“'pv'j

It’s symmetric!
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Second Order: Issues to be resolved...

* |s the 3-point function Gy we get from h((xzﬁ) symmetric?

. hézﬁ) is sourced by 862G o[ R, R(D]... Should we include

dissipative X dissipative contributions? Only conservative X conservative?

* Picking the conservative piece of hg}g means that there are standing waves

at infinity. At second order, this creates an infrared divergence. How do we
fix this? (A. Pound & J. Lewis are working on this)



Thanks for listening!
Any questions?
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