Regge-Wheeler-Zerilli formalism and metric reconstruction

Zeyd Sam

University of Potsdam
IMPRS Gravitational Waves, AEI Potsdam

with
Adam Pound, Jonathan Thompson, Barry Wardell

26th Capra Meeting on Radiation Reaction in General Relativity
Niels Bohr Institute, Copenhagen

3 July 2023

Introduction and Motivation

- Linearised Einstein field equation

$$
\mathcal{E}[h]=8 \pi T
$$

- Instead, often solve scalar field equations for invariant master variables, but sometimes we need full h
- Teukolsky reconstruction formalism is elegant
- RWZ reconstruction is opaque

RWZ equations

- Scalar wave equations

$$
\begin{aligned}
\left(-\partial_{t}^{2}+\partial_{r^{*}}^{2}-V_{o d d}^{l m}\right) \Psi_{o d d}^{l m} & =S_{o d d}^{l m} \\
\left(-\partial_{t}^{2}+\partial_{r^{*}}^{2}-V_{\text {even }}^{l m}\right) \Psi_{\text {even }}^{\prime m} & =S_{\text {even }}^{l m}
\end{aligned}
$$

- Gauge invariant master functions

$$
\begin{aligned}
\Psi_{o d d}^{/ m}(t, r) & =\frac{2 r}{(\ell-1)(\ell+2)}\left(\partial_{r} h_{t}^{l m}-\partial_{t} h_{r}^{l m}-\frac{2}{r} h_{t}^{l m}\right) \\
\Psi_{\text {even }}^{l m}(t, r) & =\frac{2 r}{\ell(\ell+1)}\left(K^{l m}+\frac{1}{\Lambda}\left(f^{2} h_{r r}^{/ m}-r f \partial_{r} K^{l m}\right)\right)
\end{aligned}
$$

where $\Lambda=\ell(\ell+1)-2+6 M / r$

RWZ reconstruction in literature

$$
\begin{aligned}
h_{t}^{l m} & =\frac{f}{2} \partial_{r}\left(r \Psi_{o d d}^{l m}\right)-\frac{1}{(\ell-1)(\ell+2)} r^{2} f P_{l m}^{t} \\
h_{r}^{l m} & =\frac{r}{2 f} \partial_{t} \Psi_{o d d}^{I m}+\frac{1}{(\ell-1)(\ell+2)} \frac{r^{2}}{f} P_{l m}^{r} \\
K^{l m} & =\left(f \partial_{r}+A\right) \Psi_{\text {even }}^{l m}-\frac{4 r^{2} f^{2}}{\ell(\ell+1) \Lambda} Q_{l m}^{t t} \\
h_{r r}^{l m} & =\left[\frac{\Lambda \ell(\ell+1)}{4 r f^{2}}+\left(\frac{r}{f} \partial_{r}-\frac{\Lambda}{2 f^{2}}\right)\left(f \partial_{r}+A\right)\right] \Psi_{e v e n}^{I m}-\left(\frac{r}{f} \partial_{r}-\frac{\Lambda}{2 f^{2}}\right) \frac{4 r^{2} f^{2}}{\ell(\ell+1) \Lambda} Q_{l m}^{t t} \\
h_{t r}^{l m} & =\left[r \partial_{t} \partial_{r}+r B \partial_{t}\right] \Psi_{\text {even }}^{l m}-\frac{2 r^{2}}{\ell(\ell+1)} Q_{l m}^{t r}-\frac{4 r^{3} f}{\Lambda \ell(\ell+1)} \partial_{t} Q_{l m}^{t t} \\
h_{t t}^{l m} & =f^{2} h_{r r}^{l m}+f Q_{l m}^{\sharp}
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\frac{2}{r \Lambda}\left[\left(\frac{1}{2} \ell(\ell+1)-1\right) \frac{1}{2} \ell(\ell+1)+\frac{3 M}{r}\left(\frac{1}{2} \ell(\ell+1)-1+\frac{2 M}{r}\right)\right] \\
B & =\frac{2}{r f \Lambda}\left[\left(\frac{1}{2} \ell(\ell+1)-1\right)\left(1-\frac{3 M}{r}\right)-\frac{3 M^{2}}{r^{2}}\right]
\end{aligned}
$$

Vacuum reconstruction: Teukolsky (CCK)

- Operator identity (Wald)

$$
\begin{aligned}
\hat{\mathcal{O}} \psi_{0} & =\mathcal{S} \\
\Longrightarrow \hat{\mathcal{O}} \hat{\mathcal{T}}[h] & =\hat{\mathcal{S}} \hat{\mathcal{E}}[h] \\
\Longrightarrow \hat{\mathcal{O}} \hat{\mathcal{T}} & =\hat{\mathcal{S}}
\end{aligned}
$$

- For Hertz potential Φ, if

$$
\hat{\mathcal{O}}^{\dagger} \Phi=0
$$

then solution to $\mathcal{E}[h]=0$ is

$$
h_{\alpha \beta}=\Re \hat{\mathcal{S}}_{\alpha \beta}^{\dagger} \Phi
$$

- Circularity condition

$$
\psi_{0}=\hat{\mathcal{T}} \hat{\mathcal{S}}^{\dagger} \Phi
$$

RW equation in 4D

- Some formulations in math literature
- Choose to write manifold $\mathcal{M}=\underbrace{\mathcal{M}^{2}}_{a=t, r} \times \underbrace{S^{2}}_{A=\theta, \phi}$

$$
\hat{O} \psi=S
$$

where $\hat{O}:=\left(\square+\frac{8 M}{r^{3}}\right)$ and

$$
\begin{aligned}
\Psi & =\sum_{l m}(\ell-1) \ell(\ell+1)(\ell+2) \frac{1}{r} \Psi_{o d d}^{l m}(t, r) Y_{l m}(\theta, \phi):=\hat{\Psi}[h] \\
S & =\sum_{l m}(\ell-1) \ell(\ell+1)(\ell+2) \frac{1}{r} S_{o d d}^{l m}(t, r) Y_{l m}(\theta, \phi):=\hat{S}[T]
\end{aligned}
$$

- Note: $\hat{O}^{\dagger}=\hat{O}$

Odd-parity: vacuum

- Circularity condition from $\Psi=\hat{\Psi}[h]$

$$
\begin{aligned}
\Psi & =\hat{\psi} \hat{S}^{\dagger} \Phi \\
& =-8\left(r^{2} D^{2} \hat{O}-\mathcal{D}\right) \Phi \\
& =8 \mathcal{D} \Phi
\end{aligned}
$$

- Purely angular relation, where

$$
\mathcal{D}:=D^{2}\left(D^{2}+2\right)
$$

- Reconstruct metric from $h=S^{\dagger} \Phi$

$$
h_{a B}=-4 \epsilon_{a}{ }^{b} \epsilon_{B}^{A} D_{A} \nabla_{b}\left(r^{2} \Phi\right)
$$

Odd-parity: operator symmetries

- Operator relations

$$
\hat{\Psi}^{\dagger}=\frac{1}{2} r^{-2} \hat{S}^{\dagger}\left(r^{2} \cdot\right)=\frac{1}{2} r^{-4} \hat{S}\left(r^{4} \cdot\right)=r^{-6} \hat{\Psi}\left(r^{6} \cdot\right)
$$

very useful

- Odd-parity analogous with electromagnetic ($s=1$) perturbations in Kerr

Odd-parity: nonvacuum

- Reconstructed metric includes corrector tensor (GHZ)

$$
h_{\alpha \beta}=S_{\alpha \beta}^{\dagger} \Phi+x_{\alpha \beta}
$$

- Circularity condition and Einstein equation

$$
\begin{aligned}
\Psi & =8 \mathcal{D} \Phi-8 r^{2} D^{2} S_{\Phi}+\hat{\Psi}_{X} \\
8 \pi T & =\hat{\Psi}^{\dagger} S_{\Phi}+\mathcal{E} x
\end{aligned}
$$

- Freedom to demand $\Psi=8 \mathcal{D} \Phi$, now have

$$
\begin{aligned}
8 r^{2} D^{2} S_{\Phi} & =\hat{\Psi}_{X} \\
\mathcal{D}(8 \pi T) & =\frac{1}{8} \hat{\Psi}^{\dagger} \hat{S}(8 \pi T)+\mathcal{D E} x
\end{aligned}
$$

Odd-parity: nonvacuum (continued)

- Conditions on x

$$
\begin{aligned}
\hat{\Psi}_{X} & =8 r^{2} D^{2} S_{\Phi} \\
\mathcal{D E} X & =\mathcal{D}(8 \pi T)-\frac{1}{8} \hat{\Psi}^{\dagger} \hat{S}(8 \pi T)
\end{aligned}
$$

- Satisfied by any solution to

$$
\left(D^{2}+1\right) x_{a B}=16 \pi\left(r^{2} T_{a B}+f_{a B}\right)
$$

- Solution for $x_{a B}$ is unique up to a $\operatorname{ker}\left[D^{2}+1\right]$; an $\ell=1$ vector harmonic

Summary

- Solved: Odd-parity vacuum and non-vacuum
- Next steps: Ideas and progress on even-parity
- Next steps: Further analogy with Teukolsky reconstruction
- Bridge between mathematics and GW physics communities

Conclusions

- Operator algebraic formulation
- provides geometric insight
- clarifies structure
- helps facilitate general derivations
- Foundation could enable extensions
- to studies in modified gravity theories
- to 2nd order GSF

Thank you

