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Introduction and Motivation

▶ Linearised Einstein field equation

E [h] = 8πT

▶ Instead, often solve scalar field equations for invariant master
variables, but sometimes we need full h

▶ Teukolsky reconstruction formalism is elegant

▶ RWZ reconstruction is opaque
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RWZ equations

▶ Scalar wave equations

(−∂2t + ∂2r∗ − V lm
odd)Ψ

lm
odd = S lm

odd

(−∂2t + ∂2r∗ − V lm
even)Ψ

lm
even = S lm

even

▶ Gauge invariant master functions

Ψlm
odd(t, r) =

2r

(ℓ− 1)(ℓ+ 2)

(
∂rh

lm
t − ∂th

lm
r − 2

r
hlmt

)
Ψlm

even(t, r) =
2r

ℓ(ℓ+ 1)

(
K lm +

1

Λ
(f 2hlmrr − rf ∂rK

lm)

)
where Λ = ℓ(ℓ+ 1)− 2 + 6M/r
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RWZ reconstruction in literature
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lm −
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∂tQ
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2
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1

2
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Vacuum reconstruction: Teukolsky (CCK)
▶ Operator identity (Wald)

Ôψ0 = S
=⇒ ÔT̂ [h] = ŜÊ [h]

=⇒ ÔT̂ = ŜÊ

▶ For Hertz potential Φ, if

Ô†Φ = 0

then solution to E [h] = 0 is

hαβ = ℜŜ†
αβΦ

▶ Circularity condition

ψ0 = T̂ Ŝ†Φ
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RW equation in 4D

▶ Some formulations in math literature

▶ Choose to write manifold M = M2︸︷︷︸
a=t,r

× S2︸︷︷︸
A=θ,ϕ

ÔΨ = S

where Ô := (□+ 8M
r3

) and

Ψ =
∑
lm

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
1

r
Ψlm

odd(t, r)Ylm(θ, ϕ) := Ψ̂[h]

S =
∑
lm

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
1

r
S lm
odd(t, r)Ylm(θ, ϕ) := Ŝ [T ]

▶ Note: Ô† = Ô
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Odd-parity: vacuum

▶ Circularity condition from Ψ = Ψ̂[h]

Ψ = Ψ̂Ŝ†Φ

= −8(r2D2Ô −D)Φ

= 8DΦ

▶ Purely angular relation, where

D := D2(D2 + 2)

▶ Reconstruct metric from h = S†Φ

haB = −4ϵa
bϵ A

B DA∇b(r
2Φ)
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Odd-parity: operator symmetries

▶ Operator relations

Ψ̂† =
1

2
r−2Ŝ†(r2·) = 1

2
r−4Ŝ(r4·) = r−6Ψ̂(r6·)

very useful

▶ Odd-parity analogous with electromagnetic (s = 1)
perturbations in Kerr
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Odd-parity: nonvacuum

▶ Reconstructed metric includes corrector tensor (GHZ)

hαβ = S†
αβΦ+ xαβ

▶ Circularity condition and Einstein equation

Ψ = 8DΦ− 8r2D2SΦ + Ψ̂x

8πT = Ψ̂†SΦ + Ex

▶ Freedom to demand Ψ = 8DΦ, now have

8r2D2SΦ = Ψ̂x

D(8πT ) =
1

8
Ψ̂†Ŝ(8πT ) +DEx
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Odd-parity: nonvacuum (continued)

▶ Conditions on x

Ψ̂x = 8r2D2SΦ

DEx = D(8πT )− 1

8
Ψ̂†Ŝ(8πT )

▶ Satisfied by any solution to

(D2 + 1)xaB = 16π(r2TaB + faB)

▶ Solution for xaB is unique up to a ker[D2 +1]; an ℓ = 1 vector
harmonic
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Summary

▶ Solved: Odd-parity vacuum and non-vacuum

▶ Next steps: Ideas and progress on even-parity
▶ Next steps: Further analogy with Teukolsky reconstruction

▶ Bridge between mathematics and GW physics communities
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Conclusions

▶ Operator algebraic formulation
▶ provides geometric insight
▶ clarifies structure
▶ helps facilitate general derivations

▶ Foundation could enable extensions
▶ to studies in modified gravity theories
▶ to 2nd order GSF

Thank you
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