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Background: Effective actions are useful to treat compact objects as
effective point particles
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Background: Effective actions are useful to treat compact objects as
effective point particles

Effective action provides systematic way to include finite size effects to the point particle
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Formal object

For non-spinning black holes, the coefficients seem to vanish to w"

Why? Hidden symmetries?

How is the full GR solution related to the point particle action?



Goal: Derive and effective action for compact object from first principles

1. Derive effective action for a scalar field in Minkowski space
2. Derive Effective action for GR
3. Derive Effective action for Black holes

4. Hidden symmetries?



We can split spacetime into two regions and get and effective action for the
outer fields
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We can split spacetime into two regions and get and effective action for the
outer fields

S[p] = —%/8Mgb8“qbd4w+/ngd4m,
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We can minimize S|¢] with the following procedure:

1. fix ¢8 = qb’B and calculate Sy, = min (Syr)

2. Seff — S]: + Smin[¢8]



Effective action depends on full details of the compact body. We don’t want
that.
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Effective action depends on full details of the compact body. We don’t want
that.
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The variation depends only on the boundary if the solution is periodic.
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Effective action depends on full details of the compact body. We don’t want
that.
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The variation depends only on the boundary if the solution is periodic.
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Effective action depends on full details of the compact body. We don’t want
that.

IS |[P] :/N(ch—i—J)(qud‘la%/z n“c?#qbéqbd%—/gn”@ugb&bd?’a:—/lgn”@#cbdqbd%
N &
Bulk terms

The variation depends only on the boundary if the solution is periodic.

Effective action is known to not describe dissipative behaviour

While the value of the action does depend on the detailed structure of the body, for
periodic systems this structure only affects an irrelevant constant
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Example: A static linear dipole

OB = bo(t) + reEe(t)Q* + r5 B (H)Q°Q0 + ...

T

— Spherical harmonic components
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Example: A static linear dipole
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Example: A static linear dipole
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Example: A static linear dipole
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We get the point particle limit by shrinking B

We send rz — 0, but we must always have rz > L

Limit is formal
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We get the point particle limit by shrinking B

We send rz — 0, but we must always have rz > L

Limit is formal

This limit is full of infinities! But we absorb the infinities into the coupling constants.

Point particle limit of example:

_ X a
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We get the point particle limit by shrinking B

We send rz — 0, but we must always have rz > L

Limit is formal

This limit is full of infinities! But we absorb the infinities into the coupling constants.

Point particle limit of example:

L3
Spp|®] = ><2/thaEa\

/ As 75 — 0, the moments Ea — E, = 0,0
Divergent number

Only finite rg with 7z << R is physical. rg — 0 limit is formal, introducing infinities that need to be regularized
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Effective action for GR
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In GR, we need to add many boundary terms

1 1
Serlguw] = SEulguw] + —/ K&V + — [ nd*V — — nd2V
8 SB 87T
1 1 1
— — drd*V + — d?s — — d*Vv
. /1(6) —i—8 Sfa 87T/Sia
1
+ S lgu] — /Kd3V— — ndQV— & /. nd2V
T
PV Y = Hl(g)ey PV A =1
[’16 Lehner, Myers, Poisson, Sorkin]
n = sinh ™ (#N,,) a = log(—t"Ny)

Conceptually same as scalar field!
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Effective action for static black holes
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In vacuum the action is simple enough to evaluate directly. No trickery
required to make it a boundary term.

Vacuum Einstein Equations + Periodicity:

Stin 9] :——/ Ko d Vd)\+—/Kd3
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If there is a static killing vector, the action simplifies

12



If there is a static killing vector, the action simplifies
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If there is a static killing vector, the action simplifies
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If there is a static killing vector, the action simplifies

1 ) 1

R T B

Komar charge
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— Affine parameter of KVF
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If there is a static killing vector, the action simplifies

1 ) 1

R T B

Komar charge

1 1
—— | Kk d®Vdr=—= /MdT
ST H 2

— Affine parameter of KVF
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2D extrinsic curvature
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Static effective action

Sett[gu] = o Rd4 / Md7+— /

Gibbons-Hawking York term of
the far-zone metric
(not evaluated on a solution)
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Static effective action

Sett[gu] = o Rd4 / MdT+— /

UV limit: shrink the tube as much as possible

T—TH

lim [ *rd’V :f Ond*Vdr =0
B H

Gibbons-Hawking York term of
the far-zone metric
(not evaluated on a solution)

/

— K)d’V

13



The point particle limit is obtained by perturbing the length scale of the horizon
around O

1
Serloy] = g5 [ RA'V = [ Mar

No approximations!
Only assumed existence of static symmetry.

No tidal terms at any order
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Conclusions

The point-particle action is a formal limit of the physical effective action.

Other methods of regularizing the point particle action , if they are indeed
equivalent to finite rp ‘regularization’, could be used for more efficient
computation.

If the null generator of the horizon is a killing symmetry, the effective
action is the associated komar charge

The vanishing of the static coeflicients for a non-rotating black hole come
from the static killing symmetry.
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Backup slides
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The variation of the action depends only on the boundary for periodic

perturbations

58N[9MV] =

1
——— [ (K — Khap)6h®® A3V
167'(' B
1 1
+— | (Ko — Khap)Sh® BV — — | (Kap — Khay)sh™ d3V
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1 1
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We don’t have a horizon for now
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The variation of the action depends only on the boundary for periodic
perturbations

1
55N (9] = e B(Kab — Khgp)oh® d3V
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We don’t have a horizon for now

Periodic perturbation:
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The variation of the action depends only on the boundary for periodic
perturbations

1
55N (9] = e B(Kab — Khgp)oh® d3V
1 1
+— | (Ko — Khap)Sh® BV — — | (Kap — Khay)sh™ d3V
167 Jx, 167 Jx.
1 1
+ — P oyap d*V — — B8y ap 2V
167T S? 167T SB

We don’t have a horizon for now

Periodic perturbation:

1

55N[9W] — _16—7r .

(Kap — Khap)dh®® d3V

Calculation of effective action will follow exact procedure of scalar field
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