Ringdown Beyond Kerr

Aaron Zimmerman
Weinberg Institute, UT Austin

Capra 26
Nield Bohr Insitute
Copenhagen, Denmark

July 7, 2023
Based on arXiv:2206.10653 with Asad Hussain

Motivation

- Ringdown signal following merger a sum of damped sinusoids
- Complex frequencies are the QNM spectrum of BHs
- Completely determined by mass and spin of remnant BH
- BH spectroscopy
- Measuring two QNMs allow for tests of GR

t/M

Motivation

- Strongest null tests from combining events
- Computing QNMs in theories beyond GR is tractable
- Allows for stronger tests, better use of population
- Much work using expansions in small spin e.g. McManus+ (2019), Cano, Fransen \& Hertog (2020)
- But merged black holes have $\chi \sim 0.7$

Gravitational perts for Kerr

- Scalar wave equation separates, metric perts don't separate or decouple

$$
G_{a b}(g)=\kappa_{0} \eta T_{a b} \quad g_{a b}=g_{a b}^{(0)}+\eta h_{a b}
$$

Gravitational perts for Kerr

- Scalar wave equation separates, metric perts don't separate or decouple

$$
\begin{array}{cc}
G_{a b}(g)=\kappa_{0} \eta T_{a b} & g_{a b}=g_{a b}^{(0)}+\eta h_{a b} \\
G_{a b}\left(g^{0}\right)=0 & \mathcal{E}_{a b}[h]=\kappa_{0} T_{a b}
\end{array}
$$

Gravitational perts for Kerr

- Scalar wave equation separates, metric perts don't separate or decouple

$$
\begin{array}{cc}
G_{a b}(g)=\kappa_{0} \eta T_{a b} & g_{a b}=g_{a b}^{(0)}+\eta h_{a b} \\
G_{a b}\left(g^{0}\right)=0 & \mathcal{E}_{a b}[h]=\kappa_{0} T_{a b}
\end{array}
$$

- Teukolsky (1973): Use Newman-Penrose eqns to decouple scalar quantites

$$
\begin{array}{lll}
s=0: & \Phi & \Phi \\
s= \pm 1: & F_{\mu \nu} & \longrightarrow \\
\phi_{0}, \phi_{2} \\
s= \pm 2: & C_{\mu \nu \rho \sigma} & \Psi_{0}, \Psi_{4}
\end{array} \longrightarrow \mathcal{O}_{s}\left[\psi_{s}\right]=4 \pi T_{s}
$$

Gravitational perts for Kerr

- Master eqn separates into ODEs

$$
\psi_{s l m \omega}=e^{-i \omega t} e^{i m \phi} R_{s l m \omega}(r) S_{s l m \omega}(\theta)
$$

- Apply appropriate boundary conditions: discrete eigensolutions $\omega_{l m n}$
- Operator picture

$$
\mathcal{S}_{s}^{a b} \mathcal{E}_{a b}[h]=\mathcal{O}_{s}\left[\psi_{s}\right]
$$

- Metric can be reconstructed

$$
h_{a b}\left[\Psi_{H}, \bar{\Psi}_{H}\right] \quad \longrightarrow \quad h_{a b}\left[\psi_{s}, \bar{\psi}_{s}\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\mathrm{int}}+\mathcal{L}_{\mathrm{matter}}\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\mathrm{int}}+\mathcal{L}_{\text {matter }}\right]
$$

$$
\begin{gathered}
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \\
\rho_{A}(\vartheta, g):=-\frac{\partial \mathcal{L}_{\mathrm{int}}}{\partial \vartheta_{A}}+\nabla_{a} \frac{\partial \mathcal{L}_{\mathrm{int}}}{\partial \nabla_{a} \vartheta_{A}}
\end{gathered}
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\mathrm{int}}+\mathcal{L}_{\mathrm{matter}}\right]
$$

$$
\begin{gathered}
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \\
\rho_{A}(\vartheta, g):=-\frac{\partial \mathcal{L}_{\text {int }}}{\partial \vartheta_{A}}+\nabla_{a} \frac{\partial \mathcal{L}_{\text {int }}}{\partial \nabla_{a} \vartheta_{A}}
\end{gathered}
$$

$$
G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{a b}^{\text {matter }}+\epsilon V_{a b}^{\text {int }}(\vartheta, g)\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\mathrm{int}}+\mathcal{L}_{\mathrm{matter}}\right]
$$

$$
\begin{gathered}
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \\
\rho_{A}(\vartheta, g):=-\frac{\partial \mathcal{L}_{\text {int }}}{\partial \vartheta_{A}}+\nabla_{a} \frac{\partial \mathcal{L}_{\text {int }}}{\partial \nabla_{a} \vartheta_{A}}
\end{gathered}
$$

$$
G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{g b}^{\mathrm{m} p \mathrm{tter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{gathered}
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \\
\rho_{A}(\vartheta, g):=-\frac{\partial \mathcal{L}_{\text {int }}}{\partial \vartheta_{A}}+\nabla_{a} \frac{\partial \mathcal{L}_{\text {int }}}{\partial \nabla_{a} \vartheta_{A}} \quad G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{\not \partial f}^{\mathrm{mptter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{gathered}
$$

- Solve order by order for equilibrium solution

$$
\vartheta_{A}=0 \quad \longrightarrow \quad G_{a b}\left(g_{c d}^{(0)}\right)=0 \quad \longrightarrow \quad g_{a b}=g_{a b}^{(0)}
$$

Black holes beyond Kerr

- Solve order by order for equilibrium solution

$$
g_{a b}=g_{a b}^{(0)}
$$

$$
\vartheta_{A}=0
$$

Black holes beyond Kerr

- Solve order by order for equilibrium solution

$$
g_{a b}=g_{a b}^{(0)} \quad \vartheta_{A}=0
$$

Black holes beyond Kerr

- Solve order by order for equilibrium solution

$$
g_{a b}=g_{a b}^{(0)} \quad \vartheta_{A}=0+\epsilon \vartheta_{A}^{(1)}
$$

Black holes beyond Kerr

- Solve order by order for equilibrium solution

$$
g_{a b}=g_{a b}^{(0)} \underbrace{}_{\rho_{A}^{(0)} \xrightarrow{T_{a b}^{\vartheta(2,0)}\left[\vartheta^{(1)}, \vartheta^{(1)}\right]+V_{a b}^{\operatorname{int}(1,0)}\left[\vartheta^{(1)}\right]} \text { } \vartheta_{A}=0+\epsilon \vartheta_{A}^{(1)}}
$$

Black holes beyond Kerr

- Solve order by order for equilibrium solution

$$
g_{a b}=g_{a b}^{(0)} \underbrace{T_{a b}^{2} g_{a b}^{(2)}\left[\vartheta^{(2)}, \vartheta^{(1)}\right]+V_{a b}^{\mathrm{int}(1,0)}\left[\vartheta^{(1)}\right]} \rho_{A}^{(0)} \xrightarrow{\vartheta_{A}=0+\epsilon \vartheta_{A}^{(1)}}
$$

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\begin{gathered}
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8}{ }^{*} R R:=-\frac{1}{8}{ }^{*} R^{a b c d} R_{a b c d} \\
\square^{(0)} \vartheta^{(1)}=\frac{1}{8}\left({ }^{*} R R\right)^{(0)} \\
V_{a b}^{\mathrm{int}}=2 g_{c(a} g_{b) d} \epsilon^{e d f g} \nabla_{h}\left({ }^{*} R^{c h}{ }_{f g} \nabla_{e} \vartheta^{(1)}\right)
\end{gathered}
$$

Quadratic gravity example: dCS

- Stationary BH solutions
- Post-Newtonian predictions (Yagi+ 2012, Shiralilou+ 2021)
- Binary black hole simulations (Okounkova+ 2019, Richards, Dima \& Witek 2023)
- Strong constraints from NICER (Silva+ 2021)

$$
\ell \lesssim 8.5 \mathrm{~km}
$$

- Slow-spin expansion for deform and ringdown (Cano+ 2020; Wagle+ 2021; Srivastava+ 2021)
- But parameter inference requires results at high spins

Perturbed black holes beyond Kerr

- To study ringdown add additional dynamical perturbations to all fields

$$
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots
$$

Perturbed black holes beyond Kerr

- Add dynamical perturbations to all fields

$$
\begin{array}{cl}
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots & g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) & G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{array}
$$

Perturbed black holes beyond Kerr

- Add dynamical perturbations to all fields

$$
\begin{array}{cc}
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots & g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) & G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{array}
$$

- Coupled equations for perts

$$
\left(\begin{array}{cc}
\mathcal{E}_{a b}+\epsilon^{2}\left(\delta \mathcal{E}_{a b}-\delta T_{a b}^{\vartheta}\right) & \epsilon \mathcal{C}_{a b} \\
\epsilon \mathcal{F}_{A} & \mathcal{W}_{A}+\epsilon\left(\delta \mathcal{W}_{A}-\delta \rho_{A}\right)
\end{array}\right)\binom{h_{c d}}{\varphi_{B}}=0
$$

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

- First solve for $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

- First solve for $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$
- Direct derivation of Teukolsky equation in general situation tricky
- Track modifications to null tetrad, spin coefficients, curvature quantities

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

See Li+ arXiv: 2206.10652
Cano+ arXiv:2023.02663

- First solve for $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$
- Direct derivation of Teukolsky equation in general situation tricky
- Track modifications to null tetrad, spin coefficients, curvature quantities

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

See Li+ arXiv: 2206.10652
Cano+ arXiv:2023.02663

- First solve for $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$
- Direct derivation of Teukolsky equation in general situation tricky
- Track modifications to null tetrad, spin coefficients, curvature quantities
- Operator approach provides shortcut:

$$
\mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right]=\mathcal{O}\left[\psi_{s}\right]+\epsilon^{2} \mathcal{V}[h]+\epsilon^{2} \mathcal{C}[h]
$$

Modified Teukolsky equation

- Expand around preferred basis: partial decoupling

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

See Li+ arXiv: 2206.10652
Cano+ arXiv:2023.02663

- First solve for $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$
- Direct derivation of Teukolsky equation in general situation tricky
- Track modifications to null tetrad, spin coefficients, curvature quantities
- Operator approach provides shortcut:

$$
\mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right]=\mathcal{O}\left[\psi_{s}\right]+\epsilon^{2} \mathcal{V}[h]+\epsilon^{2} \mathcal{C}[h]
$$

Eigenvalue perturbations

- Now we have an eigenvalue perturbation problem

$$
H^{(0)}|n\rangle=E_{n}^{(0)}|n\rangle \rightarrow\left(H^{(0)}+H^{(1)}\right)|n\rangle=\left(E_{n}^{(0)}+E_{n}^{(1)}\right)|n\rangle
$$

Eigenvalue perturbations

- Now we have an eigenvalue perturbation problem

$$
H^{(0)}|n\rangle=E_{n}^{(0)}|n\rangle \rightarrow\left(H^{(0)}+H^{(1)}\right)|n\rangle=\left(E_{n}^{(0)}+E_{n}^{(1)}\right)|n\rangle
$$

- To compute perturbed energy states, just need inner product so Hamiltonian is self-adjoint
$\left\langle n^{(0)}\right| H^{(0)}\left|n^{(1)}\right\rangle=E_{n}^{(0)}\left\langle n^{(0)} \mid n^{(1)}\right\rangle$

Eigenvalue perturbations

- Now we have an eigenvalue perturbation problem

$$
H^{(0)}|n\rangle=E_{n}^{(0)}|n\rangle \rightarrow\left(H^{(0)}+H^{(1)}\right)|n\rangle=\left(E_{n}^{(0)}+E_{n}^{(1)}\right)|n\rangle
$$

- To compute perturbed energy states, just need inner product so Hamiltonian is self-adjoint

$$
\left\langle n^{(0)}\right| H^{(0)}\left|n^{(1)}\right\rangle=E_{n}^{(0)}\left\langle n^{(0)} \mid n^{(1)}\right\rangle \quad \longrightarrow \quad E_{n}^{(1)}=\frac{\left\langle n^{(0)}\right| H^{(1)}\left|n^{(0)}\right\rangle}{\left\langle n^{(0)} \mid n^{(0)}\right\rangle}
$$

Eigenvalue perturbations

- Need finite product where Teukolsky operator is self-adjoint

$$
\left\langle\psi_{\omega} \mid \xi_{\omega}\right\rangle=c \quad\left\langle\psi_{\omega} \mid \tilde{\mathcal{O}}\left[\xi_{\omega}\right]\right\rangle=\left\langle\tilde{\mathcal{O}}\left[\psi_{\omega}\right] \mid \xi_{\omega}\right\rangle
$$

Eigenvalue perturbations

- Need finite product where Teukolsky operator is self-adjoint

$$
\left\langle\psi_{\omega} \mid \xi_{\omega}\right\rangle=c \quad\left\langle\psi_{\omega} \mid \tilde{\mathcal{O}}\left[\xi_{\omega}\right]\right\rangle=\left\langle\tilde{\mathcal{O}}\left[\psi_{\omega}\right] \mid \xi_{\omega}\right\rangle
$$

Eigenvalue perturbations

- Need finite product where Teukolsky operator is self-adjoint

$$
\left\langle\psi_{\omega} \mid \xi_{\omega}\right\rangle=c
$$

$$
\left\langle\psi_{\omega} \mid \tilde{\mathcal{O}}\left[\xi_{\omega}\right]\right\rangle=\left\langle\tilde{\mathcal{O}}\left[\psi_{\omega}\right] \mid \xi_{\omega}\right\rangle
$$

$$
\omega^{(2)} \sim-\frac{\left\langle\psi_{\omega}^{(0)}\right|(\tilde{\mathcal{V}}+\tilde{\mathcal{C}})\left|\psi_{\omega}^{(0)}\right\rangle}{\left\langle\psi_{\omega}^{(0)}\right| \partial_{\omega} \tilde{\mathcal{O}}\left|\psi_{\omega}^{(0)}\right\rangle}
$$

Eigenvalue perturbations

- Need finite product where Teukolsky operator is self-adjoint

$$
\left\langle\psi_{\omega} \mid \xi_{\omega}\right\rangle=c
$$

$$
\left\langle\psi_{\omega} \mid \tilde{\mathcal{O}}\left[\xi_{\omega}\right]\right\rangle=\left\langle\tilde{\mathcal{O}}\left[\psi_{\omega}\right] \mid \xi_{\omega}\right\rangle
$$

$\omega^{(2)} \sim-\frac{\left\langle\psi_{\omega}^{(0)}\right|(\tilde{\mathcal{V}}+\tilde{\mathcal{C}})\left|\psi_{\omega}^{(0)}\right\rangle}{\left\langle\psi_{\omega}^{(0)}\right| \partial_{\omega}\left(\tilde{O}\left|\psi_{\omega}^{(0)}\right\rangle\right.}$

Except CP symmetry requires degenerate pert theory, Li+ in prep

Breaking isospectrality

- One conceptual issue: metric reconstruction couples ψ_{s} and $\bar{\psi}_{s}$
- Couples two families of modes: $\omega_{l m n}$ and $-\bar{\omega}_{l m n}$
- Equality of modes: even and odd parity modes have same spectrum (e.g. Nichols+ 2012)
- Really degenerate perturbation theory

$$
\omega_{\text {even }}^{(2)} \neq \omega_{\text {odd }}^{(2)}
$$

- Ongoing work on parity breaking: Li et al.

Degenerate EVP

- Formally write metric reconstruction as

$$
h_{a b}^{(0)}=\mathcal{K}_{a b}[\psi]+\overline{\mathcal{K}}_{a b}[\bar{\psi}] \quad \mathcal{V}[h]=\mathcal{V} \mathcal{K}[\psi]+\mathcal{V} \overline{\mathcal{K}}[\bar{\psi}]
$$

- Consider superposition of states that don't mix

$$
\psi=\psi_{+}+\alpha \psi_{-}
$$

- Apply EVP approach

$$
\omega_{+}^{(2)}=-\frac{\left\langle\psi_{+}\right|(\mathcal{V}+\mathcal{C}) \mathcal{K}\left|\psi_{+}\right\rangle+\alpha\left\langle\psi_{+}\right|(\mathcal{V}+\mathcal{C}) \overline{\mathcal{K}}\left|\bar{\psi}_{-}\right\rangle}{\left\langle\psi_{+}\right| \partial_{\omega} \mathcal{O}\left|\psi_{+}\right\rangle}
$$

Roadmap

Roadmap

Roadmap

Looking ahead

- Predicting QNMs allow for multi-mode ringdown tests of Kerr
- Derived modified Teukolsky eqn
- EVP method: allows for high spins
- Several challenges ahead in implementation
- Many other methods to compare with
- Many detections in the coming years
- Combine constraints
- 3rd gen and LISA: precision predictions needed

Extras

Eigenvalue perturbations

Transient "turbulence" of scalar perts

Weakly charged Kerr-Newman

Example: weakly charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\tilde{\mathcal{O}}_{2}+Q^{2} \delta \tilde{\mathcal{O}}_{2} & Q^{2} \tilde{\mathcal{G}}_{2} \\
Q^{2} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{O}}+Q^{2} \delta \tilde{\mathcal{O}}_{1}
\end{array}\right)\binom{\psi_{2 \omega}}{\psi_{1 \omega}}=0
$$

Example: weakly charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\tilde{\mathcal{O}}_{2}+Q^{2} \delta \tilde{\mathcal{O}}_{2} & Q^{2} \tilde{\mathcal{G}}_{2} \\
Q^{2} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{O}}+Q^{2} \delta \tilde{\mathcal{O}}_{1}
\end{array}\right)\binom{\psi_{2 \omega}}{\psi_{1 \omega}}=0
$$

- We know the eigenmodes for $\mathrm{Q}=0$

$$
\begin{aligned}
& \psi_{2 \omega}=\psi_{2 \omega}^{(0)}+Q^{2} \psi_{2 \omega}^{(2)} \\
& \psi_{1 \omega}=0+Q^{2} \psi_{1 \omega}^{(2)}
\end{aligned}
$$

Example: weakly charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\tilde{\mathcal{O}}_{2}+Q^{2} \delta \tilde{\mathcal{O}}_{2} & Q^{2} \tilde{\mathcal{G}}_{2} \\
Q^{2} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{O}}+Q^{2} \delta \tilde{\mathcal{O}}_{1}
\end{array}\right)\binom{\psi_{2 \omega}}{\psi_{1 \omega}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2 \omega}=\psi_{2 \omega}^{(0)}+Q^{2} \psi_{2 \omega}^{(2)} \\
& \psi_{1 \omega}=0+Q^{2} \psi_{1 \omega}^{(2)}
\end{aligned}
$$

- This decouples everything

Example: weakly charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\tilde{\mathcal{O}}_{2}+Q^{2} \delta \tilde{\mathcal{O}}_{2} & Q^{2} \tilde{\mathcal{G}}_{2} \\
Q^{2} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{O}}+Q^{2} \delta \tilde{\mathcal{O}}_{1}
\end{array}\right)\binom{\psi_{2 \omega}}{\psi_{1 \omega}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2 \omega}=\psi_{2 \omega}^{(0)}+Q^{2} \psi_{2 \omega}^{(2)} \\
& \psi_{1 \omega}=0+Q^{2} \psi_{1 \omega}^{(2)}
\end{aligned}
$$

- This decouples everything

$$
\omega^{(2)}=-\frac{\left\langle\psi_{2 \omega}^{(0)}\right| \delta \tilde{\mathcal{O}}_{2}\left|\psi_{2 \omega}^{(0)}\right\rangle}{\left\langle\psi_{2 \omega}^{(0)}\right| \partial_{\omega} \tilde{\mathcal{O}}_{2}\left|\psi_{2 \omega}^{(0)}\right\rangle}
$$

Example: weakly charged black holes

Fractional Error in $\tau=\frac{\tau_{\text {exact }}-\tau_{\text {approx }}}{\tau_{\text {approx }}}$

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\tilde{\mathcal{O}}_{2}+Q^{2} \delta \tilde{\mathcal{O}}_{2} & Q^{2} \tilde{\mathcal{G}}_{2} \\
Q^{2} \tilde{\mathcal{G}}_{1} & \tilde{\mathcal{O}}+Q^{2} \delta \tilde{\mathcal{O}}_{1}
\end{array}\right)\binom{\psi_{2 \omega}}{\psi_{1 \omega}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2 \omega}=\psi_{2 \omega}^{(0)}+Q^{2} \psi_{2 \omega}^{(2)} \\
& \psi_{1 \omega}=0+Q^{2} \psi_{1 \omega}^{(2)}
\end{aligned}
$$

- This decouples everything

Combining events

- Beyond-GR parameter common to all events: stack likelihoods directly
- Beyond-GR parameter varies
- Need population modeling (hierarchical modeling) to combine events
- Modeling needs to account for degeneracies

$$
p(\vec{\theta}) \rightarrow p(\vec{\theta} \mid \vec{\Lambda}) p(\vec{\Lambda})
$$

- Example: charged black holes
- Use ringdown package (Isi, Farr)
- Use multiple tones, infer M, χ, Q
- Start from peak of full IMR waveform

GW150914

Example: Charged BHs

