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of a/M the rotation-induced splitting of the modes is roughly proportional to m, as
physical intuition would suggest.

The weakly damped modes of Kerr black holes In the right panel of Figure 8 we show
the first eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2
(dashed lines). A general feature is that almost all modes with m > 0 cluster at the
critical frequency for superradiance, 2Mω = m, as a/M → 1. This fact was first
observed by Detweiler [262], and a thorough examination of the extremal limit can be
found in Refs. [263, 264, 265]. The mode with n = 6 (marked by an arrow) shows a
peculiar deviation from the general trend, illustrating the fact that some positive-m
modes do not tend to this critical frequency in the extremal limit.
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Figure 9. Frequencies and quality factors for the fundamental modes with
l = 2, 3, 4 and different values of m. Solid lines refer to m = l, .., l (from
top to bottom), the dotted line to m = 0, and dashed lines refer to m = −1, ..,−l
(from top to bottom). Quality factors for the higher overtones are lower than the
ones we display here.

For gravitational wave detection we are mostly interested in the frequency and
quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 % 1.5251− 1.1568 b̂0.1292 , Q22 % 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 % 0.4437− 0.0739 b̂0.3350 , Q20 % 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued
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• Ringdown signal following merger a 
sum of damped sinusoids 

• Complex frequencies are the QNM 
spectrum of BHs 

• Completely determined by mass and 
spin of remnant BH 

• BH spectroscopy 

• Measuring two QNMs allow for tests 
of GR
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• Strongest null tests from combining 
events 

• Computing QNMs in theories beyond 
GR is tractable 

• Allows for stronger tests, better use of 
population 

• Much work using expansions in small 
spin e.g. McManus+ (2019), Cano, 
Fransen & Hertog (2020) 

• But merged black holes have 
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Giesler et al. 2019; Ota & Chirenti 2020); see also Bhagwat
et al. (2020) and Okounkova (2020) for discussions concerning
the interpretation of a linearized approximation starting at the
peak of GW emission. The redshifted, detector-frame remnant
mass and spin obtained from this waveform model are shown
in the right panel of Figure 9, assuming a uniform prior over
these two parameters. We find Me, χf=

taking Δt0=12.7 ms and including only the
fundamental Kerr (ℓ=2, m=2, n=0) mode, and

Me, χf= taking Δt0=0 ms and includ-
ing overtones up to n=2.

Finally, the third model (Kerr HMs) consists of a set of damped
sinusoids corresponding to all fundamental modes (i.e., without
inclusion of overtones) of a Kerr BH up to ℓ=4 and m=ℓ,
ℓ−1, including spherical−spheroidal harmonic mixing (London
2018). Complex frequencies are predicted as a function of the
remnant massMf and dimensionless spin χf, while amplitudes and
phases are calibrated on NR simulations of nonprecessing BBH
mergers. With this model we measure Me,
χf= taking Δt0=12.7 ms; the full probability
distribution is shown in the right panel of Figure 9.

In Figure 9, we compare the ringdown measurements to the
posterior credible regions for the remnant parameters obtained
through NR-calibrated fits from the initial binary parameters, as
described in Section 2.1, from the three different full waveform
models discussed above. The posterior of the ringdown
analyses is consistent at the 90% credible level with the full-
signal analyses. Furthermore, despite the different physical
content, both models that include higher multipoles or over-
tones obtain measurements of remnant parameters consistent
with the single-mode analysis estimates; a Bayes factor

computation also does not find strong evidence in favor of
the presence of higher multipoles or overtones.
A parameterized test of gravitational waveform generation

(Blanchet & Sathyaprakash 1995; Mishra et al. 2010; Li et al.
2012a, 2012b; Agathos et al. 2014) based on the PhenomPHM
waveform model also does not reveal inconsistencies with GR
predictions. Full details will be provided in an upcoming paper.

4. Single-event-based Merger Rate Estimate

We estimate the rate of mergers similar to this source,
assuming a constant rate per comoving volume–time element.
We proceed similarly to Abbott et al. (2016b): in the absence of
a parameterized population model for such sources, we assume
a population of mergers whose intrinsic parameters (component
masses and spins) are identical to the detected event up to
measurement errors (Kim et al. 2003). We estimate the
sensitivity of the LIGO–Virgo detector network by adding
simulated signals to data from the O1, O2, and O3a observing
runs and recovering them with the Coherent WaveBurst
(cWB) weakly modeled transient detection pipeline (Klimenko
et al. 2016), optimized for sensitivity to IMBH mergers
(Abadie et al. 2012), which identified GW190521 with the
highest significance (Abbott et al. 2020b). As in Abbott et al.
(2017d, 2016b), we consider a simulated signal to be detected
if recovered with an estimated false-alarm rate of 1 per 100 yr
or less. Simulated signals are prepared by drawing source
parameter samples from a posterior distribution inferred using
the NRSurPHM waveform (Section 2). The simulations’
component masses and spins are taken directly from the
posterior samples, whereas their line-of-sight direction and
orbital axis direction are randomized, and their luminosity

Figure 9. Left: redshifted (detector-frame) frequency and damping time inferred from the ringdown portion of the GW190521 signal. Measurements using a single
damped sinusoidal model of the ringdown are shown with filled contours at different start times Δt0=6.4 ms (blue), 12.7 ms (black), and 19.1 ms (light-green) (∼5,
10, ) after the reference . These are compared with the least-damped ringdown mode from the three distinct inspiral-merger-ringdown waveform
models described in Section 2.1. Right: redshifted remnant mass and spin inferred from the ringdown portion of the signal. The filled contours
show the measurement using the fundamental Kerr ℓ=2, m=2, n=0 multipole (black); the ℓ=2, m=2 Kerr model including overtones up to n=2 (gray); and
the fundamental higher mode model (Kerr HMs, light gray) described in the text. These are compared with redshifted remnant mass and spin obtained using the three
waveform models stated in Section 2.1 and Figure 3. Contours enclose 90% of the posterior distribution, and the 1D histogram shows the 90% credible regions only
for the ringdown models.
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TABLE XI. The median, and symmetric 90%-credible intervals, of the redshifted final mass and final spin, inferred from the full IMR analysis
(IMR) and the pyRing analysis (Sec. VIII A 1) with three di↵erent waveform models (Kerr220, Kerr221, and KerrHM). A positive value of
log10 BHM

220 indicates support for HM in the data, and a positive value of log10 B221
220 shows support for the presence of the first overtone. A positive

value of log10 OmodGR
GR quantify the level of disagreement with GR. The catalog-combined (including GWTC-2 events) log odds ratio is negative

(�0.90 ± 0.45).

Event Redshifted final mass Final spin Higher Overtones
(1 + z)Mf [M�] �f modes

IMR Kerr220 Kerr221 KerrHM IMR Kerr220 Kerr221 KerrHM log10 BHM
220 log10 B221

220 log10 OmodGR
GR

GW191109 010717 132.7+21.9
�13.8 181.7+28.5

�30.6 179.0+23.7
�21.7 174.5+38.1

�30.1 0.60+0.22
�0.19 0.81+0.10

�0.24 0.81+0.08
�0.14 0.77+0.11

�0.21 �0.11 1.03 �0.27
GW191222 033537 114.2+14.3

�11.7 111.4+69.3
�29.7 110.3+36.2

�23.8 118.3+97.0
�46.2 0.67+0.08

�0.10 0.46+0.41
�0.41 0.52+0.31

�0.43 0.60+0.28
�0.66 0.08 �0.83 �0.20

GW200129 065458 71.8+4.4
�3.9 60.0+16.7

�8.9 77.0+14.4
�14.2 219.1+110.4

�140.0 0.75+0.06
�0.06 0.31+0.43

�0.28 0.74+0.17
�0.59 0.54+0.35

�0.59 �0.00 �0.47 �0.09
GW200224 222234 90.3+6.4

�6.3 84.4+23.2
�20.3 88.6+15.5

�15.2 119.4+142.6
�34.3 0.73+0.06

�0.07 0.61+0.27
�0.49 0.60+0.23

�0.42 0.64+0.27
�0.59 0.20 0.95 �0.11

GW200311 115853 72.1+5.4
�4.7 68.5+23.6

�13.5 72.2+28.6
�16.3 213.2+167.8

�141.5 0.68+0.07
�0.08 0.30+0.44

�0.28 0.58+0.30
�0.47 0.56+0.32

�0.54 0.02 �1.16 �0.15

over the same set of parameters appearing in the GR template,
with the addition of the deviation parameters on which we
impose uniform priors in the [�1, 1] range for the frequency
� f̂221 and in the [�0.9, 1] range for the damping time �⌧̂221.
The lower bound on �⌧̂221 prevents issues due to the finite time
resolution in the waveform sampling. [11]. If GR provides an
accurate description of the ringdown emission, we expect to
observe posterior distributions of the deviation parameters to
be centered around zero, together with a Bayesian evidence
disfavouring the addition of non-GR parameters.

The inferred values of the frequency deviation parameters
are consistent with GR for all events analysed, while weak con-
straints can be extracted on the damping times deviations from
single events. The damping time estimation of low-SNR events
is more sensitive to violations of the Gaussianity and station-
arity hypotheses compared to the frequency estimation [11].
Additional studies investigating this behaviour will be required
in the future to properly derive joint posteriors on this pa-
rameter when combining many weak events. The posterior
distribution of �⌧̂221 often tends to rail towards the lower prior
bound �0.9 for events with low SNR in the ringdown regime,
as the data show little evidence for the first overtone.

To combine the set of measurements for all 21 available
events we make use of a hierarchical analysis [11]. The sin-
gle events posteriors used to derive this joint bound are the
marginalised � f̂221 posteriors obtained when allowing both the
frequency and the damping time of the 221 mode to deviate
from the GR predictions. We obtain a constraint on the fre-
quency deviation equal to � f̂221 = 0.01+0.27

�0.28, overlapping with
the GR predicted value for a Kerr BH, and show its posterior
probability distribution in Fig. 13. The corresponding hyper-
parameter values are: µ = 0.01+0.18

�0.18, � < 0.22. Although
GW191109 010717 is excluded from the combined analysis,
we note that even though the mass and spin estimates coming
from this event show some tension with the ones coming from
an IMR analyses, the parametrised deviations do not indicate
preference for additional parameters required to describe the
ringdown emission. We do not allow to obtain informative
constraints on �⌧̂221.

The single event odds ratios log10 OmodGR
GR values, computed

following a procedure similar to our previous analysis [11], are
reported in Table XI. The highest log10 OmodGR

GR value among
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FIG. 13. The posterior distribution of the fractional frequency
deviation for the ` = |m| = 2, n = 1 mode, � f̂221, from the pyRing
joint hierarchical analysis (triangles and small vertical bars indicate
respectively median and 90% CLs). The measurements of � f̂221 from
individual events, and its combined value using all available 21 GW
events (red solid line), both show consistency with GR. Compared to
the corresponding GWTC-2 constraint (dashed-dotted blue line), the
hierarchically combined posterior on the frequency deviation shows a
90% CL shrinkage ratio of ⇠ 8%. See Sec. VIII A 1 for details.

O3b events, �0.09, corresponds to GW200129 065458 and
does not signal significant tension. By considering all the
GWTC-3 events that passed our selection criteria (including
previous GWTC-2 results), we find a combined log odds ratio
of �0.90 ± 0.44, at 90% uncertainty, favouring the hypothesis
that GR gives an accurate description of the observed ringdown
signals.

Finally, as an agnostic test of the consistency of the ringdown
emission with GR predictions, a single damped sinusoid (DS)
template is used to fit the data. In this case we are not assuming
an underlying Kerr metric, nor that the object emitting the
signal is a BH, thus the frequency, damping time, and complex
amplitude are considered as free parameters without imposing
any predictions from GR. We adopt uniform priors on the
frequency, damping time, log of the magnitude, and the phase
of the complex amplitude. The fit starts at 10GM̄f (1+z)/c3 after

LVK arXiv:2112.06861
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Gravitational perts for Kerr
• Scalar wave equation separates, metric perts don’t separate or decouple
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Gravitational perts for Kerr
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which
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minimally coupled scalar fields (in our case this reduces
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The remainder of this paper is as follows. In Sec. II
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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,
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the



Black holes beyond GR
• Focus on theories which perturb off GR in decoupling limit

6

2

lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
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2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1
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P
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+
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint
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+ra
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Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
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int
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⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
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. (7)

Meanwhile, V
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can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
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(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)
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ab
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= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that
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= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is
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The operators F
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with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
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µ⌫ [h] for

the leading expansion of the Einstein tensor around a
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is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
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sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
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with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then
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+ ✏
2
2F

(2,0)['2,'2] . (11)
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In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
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indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
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identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
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Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤
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such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
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Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
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Lint meanwhile provides a nontrivial coupling between
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index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the

• Solve order by order for equilibrium solution
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interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
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have
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with indices raised and lowered using the background
metric. Meanwhile,
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,
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cd
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In this case we have
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ab
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(0)
ab
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and
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� habg
cd
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab
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(2)
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+O(✏3) , (23)

#A = 0 + ✏#
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A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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Here WA is a collection of generalized wave equations
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they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

Hussain, AZ arXiv: 2206.10653
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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• Solve order by order for equilibrium solution

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j
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R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�
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2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
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(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
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['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
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� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
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c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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• Solve order by order for equilibrium solution

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab
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,#

(1)
, h

(0)]

�V
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(0)]� 2T#(2,0)
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[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
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1q
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cd
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+
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with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f
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j
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
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1

2
gabg

cd
@c#@d# . (20)

In this case we have
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and
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cd
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(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch
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i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�
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� det g(0)

cd
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� det g(0)

cd
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0 (@ah
c
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with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
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f
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
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gabg
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In this case we have
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+
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1
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⇥
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c
rchab �rarbh

c
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+ g
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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• Solve order by order for equilibrium solution

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
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ab

+ ✏hab, we
have
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with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#
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= @a#@b#�
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2
gabg

cd
@c#@d# . (20)

In this case we have

T
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and
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)
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with indices raised and lowered using the background
metric. Meanwhile,

⇢
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0(0)R , (18)
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,
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In this case we have
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
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cd
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with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
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= @a#@b#�
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2
gabg

cd
@c#@d# . (20)

In this case we have
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

<latexit sha1_base64="DBKj2u1cFZanOT4y1PRYGFRyLks=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9mVoh6rXjxWsB/QXUs2zbah2WRJskJZ+je8eFDEq3/Gm//GtN2Dtj4YeLw3w8y8MOFMG9f9dlZW19Y3Ngtbxe2d3b390sFhS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3U799hNVmknxYMYJDWI8ECxiBBsr+b4ayt71Y1Zxzya9UtmtujOgZeLlpAw5Gr3Sl9+XJI2pMIRjrbuem5ggw8owwumk6KeaJpiM8IB2LRU4pjrIZjdP0KlV+iiSypYwaKb+nshwrPU4Dm1njM1QL3pT8T+vm5roKsiYSFJDBZkvilKOjETTAFCfKUoMH1uCiWL2VkSGWGFibExFG4K3+PIyaZ1XvYtq7b5Wrt/kcRTgGE6gAh5cQh3uoAFNIJDAM7zCm5M6L8678zFvXXHymSP4A+fzBxzTkRc=</latexit>

⇢(0)A

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have
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with indices raised and lowered using the background
metric. Meanwhile,
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⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
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+ ✏
2
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(2)
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+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
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[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
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ab

[#(1)] = �G
(0)
ab

[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#

(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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obeyed by h
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, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
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(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is
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Here the curvature coupling is to the Gauss-Bonnet in-
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In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
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[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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obeyed by h
(0)
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, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
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The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
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[#(1)] = �C
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
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p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.

6

obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in
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. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
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ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
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[#(1)
, h

(0)] = �C
(1)
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[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1
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�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
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Rab +R
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. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
(0)
ab

[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#

(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.

Stein arXiv:1407.2350

• Stationary BH solutions 

• Post-Newtonian predictions (Yagi+ 2012, 
Shiralilou+ 2021) 

• Binary black hole simulations (Okounkova+ 2019, 
Richards, Dima & Witek 2023) 

• Strong constraints from NICER (Silva+ 2021)  

• Slow-spin expansion for deform and ringdown 
(Cano+ 2020; Wagle+ 2021; Srivastava+ 2021) 

• But parameter inference requires results at high 
spins
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• To study ringdown add additional dynamical perturbations to all fields

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)
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(2)]� T

#(2,1)
ab
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,#

(1)
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(0)]
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ab
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ab
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+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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ab

+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
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+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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A

and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
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+O(✏2) , (34)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏
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ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]
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. (32)

For the field degrees of freedom, we find to O(✏)

W
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A
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(1,1)
A
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(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
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A
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A
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✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A
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,'

(0)] + ✏W
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A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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• Add dynamical perturbations to all fields

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
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For the field degrees of freedom, we find to O(✏)
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A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
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A
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,'
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A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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(1,0)
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['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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A
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, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
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A

+ ✏
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A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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+O(✏2) , (34)
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
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in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
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k
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P
j

i=1 ✏i'i, g
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ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)
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series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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• Add dynamical perturbations to all fields

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2G(2)

ab
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ab
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(1)]� V
int(1,0)
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['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏
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(1)
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[#(1)
,'

(1)]� V
int(1,0)
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['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is
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= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
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by 0.
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= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,
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operator expansions, we have used ✏j and k as a set of
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fields and metric perturbations 'i and hi, indexed by i.
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that depend only on the metric, for example when ex-
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for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
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the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the
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• Expand around preferred basis: partial decoupling

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
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['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2G(2)
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neglecting O(✏3) terms. We can see that had we included
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in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T
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ab
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,#
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, h
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, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab
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,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab
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,#

(1)
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, h

(0)]� 2T#(2,0)
ab

[#(1)
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(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
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2
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#(2,1)
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,'] + V
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+2V int(2,0)[#(1)
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. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
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i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
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ab

+O(✏2) , (37)

' = 0 + ✏'
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A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)

W
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[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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A
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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• First solve for 

• Direct derivation of Teukolsky equation in general situation tricky

• Track modifications to null tetrad, spin coefficients, curvature quantities

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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A
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A
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(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)
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[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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• Expand around preferred basis: partial decoupling

• First solve for 

• Direct derivation of Teukolsky equation in general situation tricky

• Track modifications to null tetrad, spin coefficients, curvature quantities

• Operator approach provides shortcut:

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
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ab
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2
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ab

+ ⌘hab + . . . , (30)

#A = ✏#
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A

+ ✏
2
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A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
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A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
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(2)
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+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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• Expand around preferred basis: partial decoupling

• First solve for 

• Direct derivation of Teukolsky equation in general situation tricky

• Track modifications to null tetrad, spin coefficients, curvature quantities

• Operator approach provides shortcut:

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
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(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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An identical expression for the frequency correction to
the electromagnetic QNM frequencies can be obtained
from the same analysis with the s = 2 subscript replaced
by s = 1. However, the stable Kerr QNM wave functions
(!I < 0) are not square-integrable along the real r-axis,
since the radiative boundary conditions cause them to
diverge at

 (0)
s ⇠ ei!r⇤ , r ! 1 ) r⇤ ! 1, (6)

with r⇤ satisfying dr⇤/dr = (r2 + a2)/((r� r+)(r� r�)),
where r± are the horizon locations in Boyer-Lindquist co-
ordinates. To derive a finite product, we observe that the
outgoing boundary condition implies that the Teukolsky

wave function  (0)
2 exponentially decays as r ! +i1,

if we choose to examine modes with !R > 0, which we
can do without loss of generality because !R + i!I is a
QNM frequency i↵ �!R + i!I is a QNM frequency. By
analytically continuing the QNM wave functions into the
complex r-plane, we can define a finite product on two
functions with the asymptotic behavior of Kerr QNM’s:
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sdr

⇡Z

0

�� sin ✓d✓ , (7)

where C is a contour that is displayed in Fig. 1. One
might expect this contour integral to be zero by Cauchy’s
integral theorem; however, the functions in Eq. (3) are
not analytic in the the enclosed region. This is be-
cause the radial Teukolsky function has a branch point
at r+, and we use a branch cut that runs parallel to
the imaginary axis emanating from r+. The weights
(r�r+)s(r�r�)s and sin ✓ are chosen to make the Teukol-
sky operator self-adjoint.

C. Numerical calculations

The spin-s QNMs of a Kerr black hole are indexed by
spheroidal harmonic indices ` and m, and an overtone
number n. For a given s, a, ` and m, the least damped
QNM is assigned n = 0 (at least when there is no mode
branching, see [27]). We label the frequency corrections
!(1) with the same indices as the corresponding back-
ground Kerr frequency !(0), grouping them as `mn. We
only discuss the modes with m � 0 because of the sym-
metry !(a,m) = !(�a,�m).

We explore the weakly charged KN QNM frequency
spectrum by numerically evaluating Eq. (5) for !(1). We
use Leaver’s continued fraction method to calculate the
Kerr QNM frequencies !(0) and a truncated version of

Figure 1: The contour C used in the definition of the product
(7). The Kerr wave functions  (0)

s are analytic everywhere
except for two branch cuts emerging from the horizons r±
and shooting o↵ to positive infinity.

Leaver’s expansion [9] to represent the Teukolsky wave

function  (0)
s . We estimate the error in our method

by performing the numerical integration twice for each
mode, the second time keeping more terms in the wave
function expansions and continued fractions, and also
more points in the angular integral. We find that the

fractional di↵erence |!(1)
run 2 � !(1)

run 1|/|!
(1)
run 2| is roughly

10�6. We test the EVP method by applying it to the DF
equation (i.e. we replace Hs with Fs). The “true” DF
QNM frequencies ! can be obtained via Leaver’s method
[21], allowing !(1) to be computed independently of the
EVP method via a numerical evaluation of (! � !(0))/q
as q ! 0. In this way we find that the fractional er-
ror in !(1) is approximately 10�5. The possible sources
for these small errors are the truncation of the QNM
wave functions, numerical imprecision in implementing
the contour integral, and error in the root finding step of
Leaver’s method.

In the top panel of Fig. 2, we parametrically plot

!(1)
R /!(0)

R + i!(1)
I /!(0)

I in the complex plane as a func-
tion of a/M , for eight low-` modes. We compute both
!(1) as predicted by the linearized KN equations (solid
lines), using Eq. (5), and as predicted by the correspond-
ing EVP analysis for DF equation (dashed lines). We
observe that in general there is a significant di↵erence
between the DF frequency corrections and the KN fre-
quency corrections. The bottom panel of Fig. 2 focuses
on the frequency corrections for rapidly-rotating black

holes. We plot !(1)
R /!(0)

R and !(1)
I /!(0)

I versus a/M for
large values of a/M . Notice that as a ! M , the DF equa-
tion predicts an increasingly accurate frequency correc-
tion !(1) for the s = 2, 220 mode, but not for the s = 1,
100 mode. We only plot two modes for clarity, but we
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sky operator self-adjoint.

C. Numerical calculations

The spin-s QNMs of a Kerr black hole are indexed by
spheroidal harmonic indices ` and m, and an overtone
number n. For a given s, a, ` and m, the least damped
QNM is assigned n = 0 (at least when there is no mode
branching, see [27]). We label the frequency corrections
!(1) with the same indices as the corresponding back-
ground Kerr frequency !(0), grouping them as `mn. We
only discuss the modes with m � 0 because of the sym-
metry !(a,m) = !(�a,�m).

We explore the weakly charged KN QNM frequency
spectrum by numerically evaluating Eq. (5) for !(1). We
use Leaver’s continued fraction method to calculate the
Kerr QNM frequencies !(0) and a truncated version of

Figure 1: The contour C used in the definition of the product
(7). The Kerr wave functions  (0)

s are analytic everywhere
except for two branch cuts emerging from the horizons r±
and shooting o↵ to positive infinity.

Leaver’s expansion [9] to represent the Teukolsky wave

function  (0)
s . We estimate the error in our method

by performing the numerical integration twice for each
mode, the second time keeping more terms in the wave
function expansions and continued fractions, and also
more points in the angular integral. We find that the

fractional di↵erence |!(1)
run 2 � !(1)

run 1|/|!
(1)
run 2| is roughly

10�6. We test the EVP method by applying it to the DF
equation (i.e. we replace Hs with Fs). The “true” DF
QNM frequencies ! can be obtained via Leaver’s method
[21], allowing !(1) to be computed independently of the
EVP method via a numerical evaluation of (! � !(0))/q
as q ! 0. In this way we find that the fractional er-
ror in !(1) is approximately 10�5. The possible sources
for these small errors are the truncation of the QNM
wave functions, numerical imprecision in implementing
the contour integral, and error in the root finding step of
Leaver’s method.

In the top panel of Fig. 2, we parametrically plot

!(1)
R /!(0)

R + i!(1)
I /!(0)

I in the complex plane as a func-
tion of a/M , for eight low-` modes. We compute both
!(1) as predicted by the linearized KN equations (solid
lines), using Eq. (5), and as predicted by the correspond-
ing EVP analysis for DF equation (dashed lines). We
observe that in general there is a significant di↵erence
between the DF frequency corrections and the KN fre-
quency corrections. The bottom panel of Fig. 2 focuses
on the frequency corrections for rapidly-rotating black

holes. We plot !(1)
R /!(0)

R and !(1)
I /!(0)

I versus a/M for
large values of a/M . Notice that as a ! M , the DF equa-
tion predicts an increasingly accurate frequency correc-
tion !(1) for the s = 2, 220 mode, but not for the s = 1,
100 mode. We only plot two modes for clarity, but we

Eigenvalue perturbations
• Need finite product where Teukolsky operator is self-adjoint
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Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   
Hussain, AZ arXiv: 2206.10653 

Except CP symmetry requires  
degenerate pert theory, Li+ in prep

<latexit sha1_base64="hhjjtim95x0+57naGztXhewUyJA="></latexit>

!(2)
⇠ �

h (0)
! |(Ṽ + C̃)| (0)

! i

h (0)
! |@!Õ| (0)

! i

<latexit sha1_base64="NuGTE8dSHOcfs32nn+XiTvgkMMY="></latexit>

h !|Õ[⇠!]i = hÕ[ !]|⇠!i
<latexit sha1_base64="ixqP72tZxIpGA3Ms1uYqNJ2igTE=">AAACFHicbZDLSgMxFIYz9VbrrerSTbAIglBmpKgboejGZQV7gU4ZMulpG5pJhiQjlrEP4cZXceNCEbcu3Pk2phdEWw8EPv7/HE7OH8acaeO6X05mYXFpeSW7mltb39jcym/v1LRMFIUqlVyqRkg0cCagapjh0IgVkCjkUA/7lyO/fgtKMyluzCCGVkS6gnUYJcZKQf7I50R0OWA/1izwZQRdgu/9ux/21cQ/xzTIF9yiOy48D94UCmhalSD/6bclTSIQhnKiddNzY9NKiTKMchjm/ERDTGifdKFpUZAIdCsdHzXEB1Zp445U9gmDx+rviZREWg+i0HZGxPT0rDcS//OaiemctVIm4sSAoJNFnYRjI/EoIdxmCqjhAwuEKmb/immPKEKNzTFnQ/BmT56H2nHROymWrkuF8sU0jizaQ/voEHnoFJXRFaqgKqLoAT2hF/TqPDrPzpvzPmnNONOZXfSnnI9vDvieLw==</latexit>

h !|⇠!i = c



Breaking isospectrality
• One conceptual issue: metric reconstruction couples         and 
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<latexit sha1_base64="hBoditT6Njif4T2meGj5nfh6Cjc=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq5cY3jf9csWrenPgVeLnpAI5Gv3yV2+gaBozaakgxnR9L7FBRrTlVLBpqZcalhA6JkPWdVSSmJkgm187xWdOGeBIaVfS4rn6eyIjsTGTOHSdMbEjs+zNxP+8bmqj6yDjMkktk3SxKEoFtgrPXscDrhm1YuIIoZq7WzEdEU2odQGVXAj+8surpHVR9S+rtftapX6Tx1GEEziFc/DhCupwBw1oAoVHeIZXeEMKvaB39LFoLaB85hj+AH3+ALMJjzk=</latexit>

 s

<latexit sha1_base64="HC/3FNp7ejlynt+m5eNAzOyqLC8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gOSUDbbTbt0swm7E6GU/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvyqQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZprxlsslanuRtRwKRRvoUDJu5nmNIkk70Sju5nfeeLaiFQ94jjjYUIHSsSCUbSSH0RUkyAzomd61Zpbd+cgq8QrSA0KNHvVr6CfsjzhCpmkxviem2E4oRoFk3xaCXLDM8pGdMB9SxVNuAkn85On5MwqfRKn2pZCMld/T0xoYsw4iWxnQnFolr2Z+J/n5xjfhBOhshy5YotFcS4JpmT2P+kLzRnKsSWUaWFvJWxINWVoU6rYELzll1dJ+6LuXdUvHy5rjdsijjKcwCmcgwfX0IB7aEILGKTwDK/w5qDz4rw7H4vWklPMHMMfOJ8/CjORHA==</latexit>

 ̄s

<latexit sha1_base64="lHihz/P97v7DUWKfAgsC85vwRM4=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOyS5idzCZD5rHMzAphyW948aCIV3/Gm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+m/mdJ6oNU/LRTlIaCTyULGEEWyeFoRJ0iPs5F3Lar9b8uj8HWiVBQWpQoNmvfoUDRTJBpSUcG9ML/NRGOdaWEU6nlTAzNMVkjIe056jEgpoon988RWdOGaBEaVfSorn6eyLHwpiJiF2nwHZklr2Z+J/Xy2xyE+VMppmlkiwWJRlHVqFZAGjANCWWTxzBRDN3KyIjrDGxLqaKCyFYfnmVtC/qwVX98uGy1rgt4ijDCZzCOQRwDQ24hya0gEAKz/AKb17mvXjv3seiteQVM8fwB97nD31Fkf4=</latexit>!lmn
<latexit sha1_base64="ep8W1bLgGUXmdotn4nwPu/CXulo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgxpJIUZdFNy4r2Ac0IUym03boPMLMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPnDCqjed9O6W19Y3NrfJ2ZWd3b//APax2tEwVJm0smVS9GGnCqCBtQw0jvUQRxGNGuvHkduZ3H4nSVIoHM01IyNFI0CHFyFgpcqvnQYwUDCQnIxRljIs8cmte3ZsDrhK/IDVQoBW5X8FA4pQTYTBDWvd9LzFhhpShmJG8EqSaJAhP0Ij0LRWIEx1m89tzeGqVARxKZUsYOFd/T2SIaz3lse3kyIz1sjcT//P6qRlehxkVSWqIwItFw5RBI+EsCDigimDDppYgrKi9FeIxUggbG1fFhuAvv7xKOhd1/7LeuG/UmjdFHGVwDE7AGfDBFWiCO9ACbYDBE3gGr+DNyZ0X5935WLSWnGLmCPyB8/kDwxiUSQ==</latexit>�!̄lmn

• Couples two families of modes:              and 

• Equality of modes: even and odd parity modes have same spectrum 
(e.g. Nichols+ 2012)

<latexit sha1_base64="lHihz/P97v7DUWKfAgsC85vwRM4=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOyS5idzCZD5rHMzAphyW948aCIV3/Gm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+m/mdJ6oNU/LRTlIaCTyULGEEWyeFoRJ0iPs5F3Lar9b8uj8HWiVBQWpQoNmvfoUDRTJBpSUcG9ML/NRGOdaWEU6nlTAzNMVkjIe056jEgpoon988RWdOGaBEaVfSorn6eyLHwpiJiF2nwHZklr2Z+J/Xy2xyE+VMppmlkiwWJRlHVqFZAGjANCWWTxzBRDN3KyIjrDGxLqaKCyFYfnmVtC/qwVX98uGy1rgt4ijDCZzCOQRwDQ24hya0gEAKz/AKb17mvXjv3seiteQVM8fwB97nD31Fkf4=</latexit>!lmn
<latexit sha1_base64="ep8W1bLgGUXmdotn4nwPu/CXulo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgxpJIUZdFNy4r2Ac0IUym03boPMLMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPnDCqjed9O6W19Y3NrfJ2ZWd3b//APax2tEwVJm0smVS9GGnCqCBtQw0jvUQRxGNGuvHkduZ3H4nSVIoHM01IyNFI0CHFyFgpcqvnQYwUDCQnIxRljIs8cmte3ZsDrhK/IDVQoBW5X8FA4pQTYTBDWvd9LzFhhpShmJG8EqSaJAhP0Ij0LRWIEx1m89tzeGqVARxKZUsYOFd/T2SIaz3lse3kyIz1sjcT//P6qRlehxkVSWqIwItFw5RBI+EsCDigimDDppYgrKi9FeIxUggbG1fFhuAvv7xKOhd1/7LeuG/UmjdFHGVwDE7AGfDBFWiCO9ACbYDBE3gGr+DNyZ0X5935WLSWnGLmCPyB8/kDwxiUSQ==</latexit>�!̄lmn

Hussain, AZ arXiv: 2206.10653

• Really degenerate perturbation 
theory 

• Ongoing work on parity breaking: 
Li et al.

<latexit sha1_base64="vURITNtGVqHe7auj2ku8uKEFGVU=">AAACHHicbVDLSgNBEJz1GeMr6tHLYBDiJexqUI+iF48RTBSyMczOduLgPNaZWSEs+yFe/BUvHhTx4kHwb5w8DppY0FBUddPdFSWcGev7397M7Nz8wmJhqbi8srq2XtrYbBqVagoNqrjS1xExwJmEhmWWw3WigYiIw1V0dzbwrx5AG6bkpe0n0BakJ1mXUWKd1CkdhEpAj9xklf29vJOFWmB4AJnjUMI9njZVHOedUtmv+kPgaRKMSRmNUe+UPsNY0VSAtJQTY1qBn9h2RrRllENeDFMDCaF3pActRyURYNrZ8Lkc7zolxl2lXUmLh+rviYwIY/oicp2C2Fsz6Q3E/7xWarvH7YzJJLUg6WhRN+XYKjxICsdMA7W87wihmrlbMb0lmlDr8iy6EILJl6dJc78aHFZrF7Xyyek4jgLaRjuoggJ0hE7QOaqjBqLoET2jV/TmPXkv3rv3MWqd8cYzW+gPvK8fAxmhVw==</latexit>

!(2)
even 6= !(2)

odd



Degenerate EVP
• Formally write metric reconstruction as

16
Hussain, AZ arXiv: 2206.10653

<latexit sha1_base64="uV0MwfCue9q8Q1oImxaPh/G2ywg=">AAACMnicbVDLSgMxFM3UV62vqks3wVKoCGVGiroRim4UNxXsAzrjcCfNtKGZB0lGKEO/yY1fIrjQhSJu/QjTx0LbHggczrmX3HO8mDOpTPPNyCwtr6yuZddzG5tb2zv53b2GjBJBaJ1EPBItDyTlLKR1xRSnrVhQCDxOm17/auQ3H6mQLArv1SCmTgDdkPmMgNKSm7/pPaQl82jopuAN8QVO7QBUjwDHtxOtbceSOfgY2x6IBa5W8XjEzRfMsjkGnifWlBTQFDU3/2J3IpIENFSEg5Rty4yVk4JQjHA6zNmJpDGQPnRpW9MQAiqddBx5iIta6WA/EvqFCo/VvxspBFIOAp2pODpZznojcZHXTpR/7qQsjBNFQzL5yE84VhEe9Yc7TFCi+EATIILpWzHpgQCidMs5XYI1G3meNE7K1mm5clcpVC+ndWTRATpEJWShM1RF16iG6oigJ/SKPtCn8Wy8G1/G92Q0Y0x39tE/GD+/PlyqNw==</latexit>

h(0)
ab = Kab[ ] + K̄ab[ ̄]

<latexit sha1_base64="41HV3cWJHFwJ13jpcANUImyXULU=">AAACO3icbVDLSsNAFJ34rPUVdelmsAiCUBIp6kYouhHcVLEPSEKZTKft0MkkzEyEEvpfbvwJd27cuFDErXsnabC19cLAmXPO5d57/IhRqSzrxVhYXFpeWS2sFdc3Nre2zZ3dhgxjgUkdhywULR9JwigndUUVI61IEBT4jDT9wVWqNx+IkDTk92oYES9APU67FCOlqbZ55wZI9TFisOH0PXgBJ/9fdOO4kaQePJ4WfSSSiWPkpATMfG2zZJWtrOA8sHNQAnnV2uaz2wlxHBCuMENSOrYVKS9BQlHMyKjoxpJECA9QjzgachQQ6SXZ7SN4qJkO7IZCP65gxk53JCiQchj42pluK2e1lPxPc2LVPfcSyqNYEY7Hg7oxgyqEaZCwQwXBig01QFhQvSvEfSQQVjruog7Bnj15HjROyvZpuXJbKVUv8zgKYB8cgCNggzNQBdegBuoAg0fwCt7Bh/FkvBmfxtfYumDkPXvgTxnfP2+SrTA=</latexit>

V[h] = VK[ ] + VK̄[ ̄]

• Consider superposition of states that don’t mix
<latexit sha1_base64="ULVI9Ntj4gMRpr0CgSzT6oI26U8=">AAACBnicbVDLSgMxFM3UV62vUZciBIsgFMuMFHUjFN24rGAf0BmGTJq2oZlMSDJCGbpy46+4caGIW7/BnX9jpp2Fth4IOTnnXm7uCQWjSjvOt1VYWl5ZXSuulzY2t7Z37N29looTiUkTxyyWnRApwignTU01Ix0hCYpCRtrh6Cbz2w9EKhrzez0WxI/QgNM+xUgbKbAPPaEovILZFVRgBXqIiSGavU8Du+xUnSngInFzUgY5GoH95fVinESEa8yQUl3XEdpPkdQUMzIpeYkiAuERGpCuoRxFRPnpdI0JPDZKD/ZjaQ7XcKr+7khRpNQ4Ck1lhPRQzXuZ+J/XTXT/0k8pF4kmHM8G9RMGdQyzTGCPSoI1GxuCsKTmrxAPkURYm+RKJgR3fuVF0jqruufV2l2tXL/O4yiCA3AEToALLkAd3IIGaAIMHsEzeAVv1pP1Yr1bH7PSgpX37IM/sD5/AJcJl04=</latexit>

 =  + + ↵ �

• Apply EVP approach
<latexit sha1_base64="Q0ZIDPJhTvr9flh67QVtFD//7G8="></latexit>

!(2)
+ = �

h +|(V + C)K| +i+ ↵h +|(V + C)K̄| ̄�i

h +|@!O| +i



Roadmap
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Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>
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Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>
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Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>

 (0)
slmn

Choose mode
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ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b
are discussed in Appendix B.

Figure 2 shows representative sensitivities during O3b
for LIGO Hanford, LIGO Livingston and Virgo, as char-

LVK arXiv:2111.03606
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• Chandrasekhar: NP derivation

Mark, Yang, AZ, Chen, arXiv:1409.5800   

<latexit sha1_base64="dswDWknpSJYf+hK6MjPDHiguon8=">AAADQHicjVJNb9QwEHXCVwkf3cKRi8UKhARaJasKuCBVcIAbrcRuK62XyHFmt1YdJ4onqCsrP40LP4EbZy4cQIgrJ5xsDm22lRjJ0vjNe56ZJyeFkgbD8JvnX7l67fqNrZvBrdt37m4Pdu5NTV6VAiYiV3l5lHADSmqYoEQFR0UJPEsUHCYnb5r64Scojcz1B1wVMM/4UsuFFBwdFO94U5bAUmpbZBxLeVoHDKVKwTJ3PxZc0fexHdc1fUoZwim2HW2iKqjtwccxS0EhpxuaOh7X9PGFEsqe9elvWzpjwf/zo/Xz/baXjEkvn9NGtdsZdHrGgb4jhZHOBJZnsOTrOVsk6pDzchq8omEQD4bhKGyDbiZRlwxJF/vx4CtLc1FloFEobswsCgucW16iFApcj8pAwcUJX8LMpZpnYOa23bOmjxyS0kVeuqORtuhZheWZMassccxmddOvNeBFtVmFi5dzK3VRIWixbrSoFMWcNr+JprIEgWrlEi5K6Wal4piXXKD7c40JUX/lzWQ6HkXPR7sHu8O9150dW+QBeUiekIi8IHvkHdknEyK8z95376f3y//i//B/+3/WVN/rNPfJufD//gNe6Q/o</latexit>✓
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increasingly accurate frequency correction ωð1Þ for the
s ¼ 2, 220 mode, but not for the s ¼ 1, 100 mode. We
only plot two modes for clarity, but we also found that the
DF equation becomes increasingly accurate as a → M for
the s ¼ 1, 110 mode, but not for the s ¼ 2, 210 or the
s ¼ 2, 200 modes.
Using Eq. (5), we can understand this phenomenon

analytically. In the nearly extremal Kerr spacetime, there
are two branches of QNMs [27,28]; the zero damping
modes (ZDMs), which have zero decay in the extremal
limit a → M [29,30], and the damped modes (DMs), which
retain a finite decay in this limit. The s ¼ 2, 220 mode and
the s ¼ 1, 110 mode are both ZDMs, while the s ¼ 2, 210;
s ¼ 2, 200; and the s ¼ 1, 110 modes are all DMs. By
expanding the Teukolsky equation in powers of ϵ≡
1 − a=M, one can show that near the horizon (r − rþ <ffiffiffi
ϵ

p
), the Kerr ZDMs depend on ϵ only through the

conformal variable x≡ ðr − 1Þ=
ffiffiffi
ϵ

p
[17,28], while DMs

do not vary much with ϵ in the ϵ → 0 limit. Further, when

analytically continued onto the contour C, the ZDM wave
function is concentrated in the near horizon region,
allowing the integral (7) to be performed only over the
near horizon region x ≪ 1. Thus, we can figure out how the
different terms in the formula for ωð1Þ scale with ϵ, if we
write F s andHs in terms of the variable x and then pick off
the leading order ϵ-dependence. The scalings are

∂F s

∂q ¼ Oðϵ−1Þ; ∂ðHs − F sÞ
∂q ¼ Oð1Þ;

∂Hs

∂ω ¼ Oðϵ−1=2Þ: ð8Þ

The DF equation predicts increasingly accurate frequency
corrections as ϵ → 0 for modes which correspond to Kerr
ZDMs because the term that it neglects in Eq. (5) isOð

ffiffiffi
ϵ

p
Þ,

which is of subleading order.
If we assume that our first order analysis in q is accurate

all the way up to qmax, none of the eight modes that we
consider become unstable before they reach extremality. To
estimate how large Q can get before higher order con-
tributions (in q) become important, we use the EVP method
to calculate the leading order correction ωð1Þ to the QNM
frequencies of the DF equation. We then calculate the
residual error in the first order analysis δω ¼ ω−
ωð0Þ − qωð1Þ, where ω is the DF frequency calculated using
Leaver’s method, and compare it to qωð1Þ. Figure 3 plots
the comparison versus Q=Qmax for the s ¼ 2, 220 mode
and selected values of a. We see that the importance of the
higher order contributions varies greatly with a. Figure 3
also reveals that for most modes the first order analysis
begins to fail long before Q ¼ Qmax, indicating that going
beyond linear analysis is likely necessary for NEKN
QNMs. However, there are some modes, such as the
a ¼ −0.8M, s ¼ 2, 220 mode, where the first order
analysis is reasonably accurate, even when Q ¼ Qmax.
While we have focused on the fundamental l ¼ 1 (dipolar

FIG. 2 (color online). The frequency corrections ωð1Þ as
predicted by the KN equations (1) (solid lines) and by the DF
equation (dashed lines). Top panel: scaled frequency corrections
ωð1Þ
R =ωð0Þ

R þ iωð1Þ
I =ωð0Þ

I as a function of a=M. Only the modes
with m ≥ 0 are plotted, and each subsequent data point increases
by 0.15 in a=M (left to right), beginning with a=M ¼ −0.95 for
the m ¼ 1; 2 modes and with a=M ¼ 0 for the m ¼ 0 modes.
Bottom panels: The s ¼ 2, 220 and s ¼ 1, 100 QNM frequencies
plotted versus a=M in the rapidly-rotating regime.

FIG. 3 (color online). Estimate of the size of higher order
corrections in q, based on the EVP method applied to the DF
equation. The residual error in the first order analysis is
δω ¼ ω − ωð0Þ − qωð1Þ, where ω is the true DF frequency
calculated using Leaver’s method.

MARK et al. PHYSICAL REVIEW D 91, 044025 (2015)
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Õ2 +Q2�Õ2 Q2
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Example: weakly charged black holes
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• Chandrasekhar: NP derivation

• We know the eigenmodes for Q = 0

• This decouples everything

Dias, Godazgar, Santos, arXiv:1501.04625 
Carullo+ arXiv:2109.13961
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Combining events
• Beyond-GR parameter common to all events: stack 

likelihoods directly 

• Beyond-GR parameter varies 

• Need population modeling (hierarchical 
modeling) to combine events 

• Modeling needs to account for degeneracies 

• Example: charged black holes 

• Use ringdown package (Isi, Farr) 

• Use multiple tones, infer 

• Start from peak of full IMR waveform

22
Hussain, Isi, AZ in prep 
cf Carullo+ arXiv:2109.13961 
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Example: Charged BHs
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