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waveforms and their subsequent use in analysing data at
low frequencies (< 1Hz), impact of higher order modes
can not be neglected while analysing signals from IM-
RIs. This has been the primary motivation to study
IMRIs in deci-Hertz band. We explore the eccentricity
and mass ratio space by employing state-of-the-art in-
puts from the black hole perturbation theory approach
(see Sec. II below). The eccentricity and mass ratio val-
ues explored in the current work are in range 0 . e . 0.3
and 10 . q . 104. One may object the use of BHP
inputs in studying systems with mass-ratios associated
with IMRIs. It is natural to expect that the results of the
BHP approach tend to become less and less accurate as
as one moves towards equal mass limit. One may expect
that this choice will lead to an underestimate of the gain
in SNR due to eccentricity in each mode. We attempt
to quantify this by computing the SNR in each mode
by making use of frequency domain waveforms based on
post-Newtonian theory which are applicable to arbitrary
mass ratios. Figure XX displays a measure of SNR in
¸ = |m| up to ¸ = 7 modes purely due to mass ratio
corrections present in post-Newtonian waveforms. Since
PN results are available only to 3PN order as opposed
to the 5PN results from the BHP approach this compar-
ison is performed in the 3PN limit. [Chandra: Include a

discussion based on the results of snr gain figure.]

This paper is organised as follows. Section II sum-
marises the methodology adopted for quantifying the de-
tection of an eccentric GW mode. Waveforms, detec-
tor configuration and other necessary inputs are also in-
cluded in this section. Section III presents our findings.
Finally, in Sec. IV includes a comprehensive summary of
our findings and future directions.

II. METHODOLOGY

The sky-averaged signal-to-noise ratio (SNR)(fl) of a
GW signal for a single detector can be written in terms
of a characteristic amplitude (hc,n) following [20, 21] as

Èfl2Í = 3
20

ÿ

n

⁄ fup

flow

h
2
c,n(fn)

f2
nSh(fn) df, (1)

where È· · · Í denote averaging over angular parameters.
The characteristic amplitude (hc,n) read

hc,n = (fid)≠1
Ò

2Ėn/ḟn , (2)

where Ėn is the power radiated in GWs at infinity at the
frequency fn. Both Ėn and ḟn with 5PN accuracy for
eccentric inspirals in ÷ æ 0 limit were computed in [22]
and taken as inputs for the current work. While eccentric
corrections are included to the 5PN order, circular pieces
are accurate to 12PN order which were first obtained in
[23].

[Chandra: Estuti, use solid lines for the PSDs. Plot also

advanced LIGO (design) PSDs for reference (see Eq. 2.1 of

https://arxiv.org/abs/1005.0304).]

The noise power spectrum density (Sh(f)) for B-
DECIGO configuration is given in [24] and it reads

Sh(f) = S0
Ë
1.0+1.584◊10≠2

f
≠4 +1.584◊10≠3

f
2
È

(3)

where S0 = 4.04 ◊ 10≠46 Hz≠1 and the detector con-
figuration is expected to be sensitive in the frequency f

band of 0.01-100 Hz. This naturally fixes flow=0.01Hz
while fup is taken to be the 100Hz or twice of the last-
stable-orbit frequency (flso) whichever is smaller. The
last-stable-orbit frequency is given by

flso = (63/2
fi M)≠1

, (4)

where M denotes the total mass of the binary. [Estuti:

Should fISCO and fup choice also be included?] [Chandra: I

have included the choices in Eq. (1) as well as above. Please

make sure all SNRs are computed in this range.]

FIG. 1. [Estuti: Amplitude spectrum of B-DECIGO and Ad-
vanced LIGO.[Chandra: Extend aLIGO PSD to 10Hz.]]

The eccentricity is evolved using small eccentricity ap-
proximation of [25] given by

e = e0(f0/f)19/18 (5)

where (e0, f0) denotes eccentricity and frequency at a
reference epoch (say as binary enters the sensitivity band
of the detector).

[Chandra: We will eventually be using a 5PN version of

the (5). I shall include it here and also share the expressions.

BTW when citing an equation we should use ‘eqref’ instead

of ‘ref’; this will automatically put the equation number in

parentheses.]

III. RESULTS

[Chandra: Estuti, include the following figures and related

discussion.]

1. SNR for ¸=m=2 mode as a function of total mass
using circular waveforms in a single plot (nor-
malised by the necessary ÷ factor). Identify the
mass with highest SNR. (Fig:2)

2

waveforms and their subsequent use in analysing data at
low frequencies (< 1Hz), impact of higher order modes
can not be neglected while analysing signals from IM-
RIs. This has been the primary motivation to study
IMRIs in deci-Hertz band. We explore the eccentricity
and mass ratio space by employing state-of-the-art in-
puts from the black hole perturbation theory approach
(see Sec. II below). The eccentricity and mass ratio val-
ues explored in the current work are in range 0 . e . 0.3
and 10 . q . 104. One may object the use of BHP
inputs in studying systems with mass-ratios associated
with IMRIs. It is natural to expect that the results of the
BHP approach tend to become less and less accurate as
as one moves towards equal mass limit. One may expect
that this choice will lead to an underestimate of the gain
in SNR due to eccentricity in each mode. We attempt
to quantify this by computing the SNR in each mode
by making use of frequency domain waveforms based on
post-Newtonian theory which are applicable to arbitrary
mass ratios. Figure XX displays a measure of SNR in
¸ = |m| up to ¸ = 7 modes purely due to mass ratio
corrections present in post-Newtonian waveforms. Since
PN results are available only to 3PN order as opposed
to the 5PN results from the BHP approach this compar-
ison is performed in the 3PN limit. [Chandra: Include a

discussion based on the results of snr gain figure.]

This paper is organised as follows. Section II sum-
marises the methodology adopted for quantifying the de-
tection of an eccentric GW mode. Waveforms, detec-
tor configuration and other necessary inputs are also in-
cluded in this section. Section III presents our findings.
Finally, in Sec. IV includes a comprehensive summary of
our findings and future directions.

II. METHODOLOGY

The sky-averaged signal-to-noise ratio (SNR)(fl) of a
GW signal for a single detector can be written in terms
of a characteristic amplitude (hc,n) following [20, 21] as

Èfl2Í = 3
20

ÿ

n

⁄ fup

flow

h
2
c,n(fn)

f2
nSh(fn) df, (1)

where È· · · Í denote averaging over angular parameters.
The characteristic amplitude (hc,n) read

hc,n = (fid)≠1
Ò

2Ėn/ḟn , (2)
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in the extreme mass-ratio limit. More recently, fully relativistic information coming
from GSF theory has been used to inform the EOB Hamiltonian.91,162–164 The ini-
tial model was also extended to account for spin e↵ects in black hole binaries.165–170

The EOB model further incorporates a description of the gravitational-wave emis-
sion and the related dissipative radiation-reaction force.171–173 Both conservative
and dissipative sectors rely heavily on resummation methods such as Padé approxi-
mants,174,175 aimed at improving the convergence of the PN series in the strong-field
regime (see however Refs. 176, 177, 178 and 179). To account for uncontrolled rel-
ativistic corrections during the late inspiral and final plunge, the EOB model also
makes use of several free parameters that are fitted by comparison to the results of
fully nonlinear NR simulations. Ongoing work focuses on calibrating several versions
of the model to NR simulations for increasingly generic binary configuations.180–186

See Refs. 187, 188 and 189 for recent reviews.

These approximation methods and numerical techniques are depicted in Fig. 1.
While the domain of validity of NR simulations does, in principle, cover the entire
parameter space, in practice it is constrained by available computational ressources.
Indeed, both wide separations and large mass ratios require exceedingly long com-
putations. The domains of validity of PN theory and BHP theory are not delimited
by sharp boundaries either; these depend on the acceptable level of error made in
approximating the exact result for any given calculation. Borrowing results from the
PN approximation and BHP theory, as well as nonperturbative information from
NR simulations, the EOB model aims at covering the entire parameter space.
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Fig. 1. Di↵erent analytical approximation schemes and numerical techniques are used to model
the orbital dynamics and gravitational-wave emission from black hole binaries, according to the
mass ratio 0 < m1/m2 6 1 and the compactness parameter 0 < M/r . 1, where M = m1 +m2 is
the total mass and r the typical binary separation.

Approximation schemes

4 [Blanchet, LLR (2014)]



Outline

PN and BHP solutions for ICBs in circular 

orbits 


Eccentric corrections and hybridisation 


Model systematics : impact of mass-ratio, 

eccentricity and higher order BHP terms 
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Approximation schemes
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[Blanchet+, arXiv:2304.11185]

Taylor series expansions in small parameters such as internal source velocities


Point particles, multipolar expansions etc. 


High order computations (nontrivial due to IR divergences)
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+

(

−
1492917260735

134120448
+

2255

6
π2

)

ν +
45293335

127008
ν2 +

10323755

199584
ν3
]

πv9 +O
(

v10
)

}

, (9)

where v ≡
(

πGmF
c3

)1/3
with F being the Fourier frequency, and where T0 and Ψ0 are two integration constants. Again

we have adjusted T0 in order to simplify the result (and we have absorbed the usual −π
4
into Ψ0). The coefficients

up to 3.5PN, as well as the 4.5PN piece, are already in use; see e.g. App. A of [72].
In order to get intuition on the relative contribution of each PN order to the signal, we provide in Table I rough

numerical estimates for the number of accumulated GW cycles in the frequency band of current and future detectors.
Our naive estimation does not take the various detector noises into account, and a more realistic estimation should
be performed [73]. Nevertheless, it can be useful to gain insight on the behavior of the PN expansion, which seems
to converge well, as we see from Table I. For all the typical compact binaries in Table I, we find that the 4PN and
4.5PN orders amount to about a tenth of a cycle (less than 1 radian). This suggests that systematic errors due to the
PN modeling may be dominated by statistical errors and negligible for LISA. However, this should be confirmed by
detailed investigations along the lines of [74].

Detector LIGO/Virgo ET LISA

Masses (M!) 1.4× 1.4 10× 10 1.4× 1.4 500× 500 105 × 105 107 × 107

PN order cumulative number of cycles

Newtonian 2 562.599 95.502 744 401.36 37.90 28 095.39 9.534

1PN 143.453 17.879 4 433.85 9.60 618.31 3.386

1.5PN −94.817 −20.797 −1 005.78 −12.63 −265.70 −5.181

2PN 5.811 2.124 23.94 1.44 11.35 0.677

2.5PN −8.105 −4.604 −17.01 −3.42 −12.47 −1.821

3PN 1.858 1.731 2.69 1.43 2.59 0.876

3.5PN −0.627 −0.689 −0.93 −0.59 −0.91 −0.383

4PN −0.107 −0.064 −0.12 −0.04 −0.12 −0.013

4.5PN 0.098 0.118 0.14 0.10 0.14 0.065

TABLE I. Contribution of each PN order to the total number of accumulated cycles inside the detector’s frequency band, for
typical (but non-spinning) quasi-circular compact binaries observed by current and future detectors. We have approximated the
frequency bands of LIGO/Virgo, Einstein Telescope (ET) and LISA with step functions, respectively between

[

30Hz, 103 Hz
]

,
[

1Hz, 104 Hz
]

and
[

10−4 Hz, 10−1 Hz
]

. When the merger occurs within the frequency band of the detector, the exit frequency

is taken to be the Schwarzschild ISCO, fISCO = c3/(63/2πGm). The contributions due to the non-linearities of GR (e.g., tails)
increase with the PN order and are detailed in [22].

Besides the chirp described by the results (6)–(8), it is also important to compute the wave amplitude, in view
of the data analysis of LISA [75–77] and high-accuracy comparisons with numerical relativity (see e.g. [78–81]). We
decompose the waveform, at leading order in the distance R to the source, onto a basis of spin-weighted spherical
harmonics (following the conventions of [82, 83])

h+ − ih× =
8Gmνx

Rc2

√

π

5

+∞
∑

"=2

"
∑

m=−"

H"me
−imψY "m

−2 , (10)

where the phase variable is given by (8). All H"m modes are currently known at 3.5PN order for spinning, non-
precessing, quasi-circular orbits [82–86]. Although we were able to derive the phase with 4.5PN accuracy, the same
precision for the modes is yet out of reach, since, even though the 4.5PN radiation-reaction terms in the equations
of motion are known [87, 88], neither the source quadrupole moment nor the non-linear contributions to the GW
propagation are fully controlled at 4.5PN order (only the contributions that enter the 4.5PN flux for circular orbits
are known). We thus report the extension of the dominant quadrupole mode (#,m) = (2, 2) for non-spinning, quasi-
circular orbits up to 4PN order:

H22 = 1 +

(

−
107

42
+

55

42
ν

)

x+ 2πx3/2 +

(

−
2173

1512
−

1069

216
ν +

2047

1512
ν2
)

x2 +

[

−
107π

21
+

(

34π

21
− 24 i

)

ν

]

x5/2

[Order counting terminology : nPN := v2n ]
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1.2 22-mode amplitude results

Circular 22-mode amplitude in PN and BHP formalism.

H
22

PN
= 1�

✓
107

42
+

55⌘

42

◆
v
2
+ · · · +O(v

7
) (11)

H
22

BHP
= 1�

107

42
v
2
+ · · · +O(v

11
) (12)

Eccentric 22-mode amplitude in PN and BHP formalism.

H
22

PN
= 1 +

✓
�

107

42
+

55⌘

42

◆
v
2
+ · · · +O(v

6
) + e

⇢
3

2
Cos(`) + v

2

✓
�

79

28
+

69⌘

28

◆
Cos(`)

+ · · · +O(v
6
)

�
+O(e

10
) (13)

|H[2, 2]BHP| = 1�
107

42
v
2

b + · · · +O(v
10

b ) + eb

⇢
3

2
Cos(!r(t� r

⇤
))�

205

28
v
2

bCos(!r(t� r
⇤
))

+ · · · +O(v
10

b )

�
+O(e

10

b ) (14)

BHP eccentric 22-mode amplitude in PN parameters.

Using eqn (6) and (7) it has shown that,

!r(t� r
⇤
) = n(t� t0) = ` (15)

and,

|H[2, 2]BHP| = 1�
107

42
v
2
+ · · · +O(v

10
)+e

⇢
3

2
Cos(`)�

79

28
v
2
Cos(`)+ · · · +O(v

10
)

�
+O(e

10
) (16)

The above expression for eccentric 22-mode amplitude is consistent with PN 22-mode eccentric

amplitude till 3PN and e
2
.

Hybrid PNBHP 22-mode amplitude till 5PN and e
2

|H[2, 2]PNBHP| = 1 +

✓
�
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4

[O(v2n) : terms beyond nPN and ignored  ] [Kidder (’07), Blanchet + (’08)]

[Fujita-Iyer (’10)]
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IMRI Results

1 Waveform

h
lm

=
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2

r
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5
e
�im 
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(1)

where,  is the GW phase and H
lm

is the normalised mode amplitudes.

GW phase  is related to the orbital phase � as,

 = �� 6 v
3

⇣
1�

⌫

2
v
2

⌘
log

✓
v

v0

◆
(2)

BHP parameters: vb, eb, !r

PN parameters: v, e, `, n

1.1 Phase Results

Circular orbital phase in PN and BHP formalism:
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Eccentric orbital phase in PN and BHP formalism:
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1

Scaling

[Blanchet + (’02)]

[Fujita (’12)]
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PN-Phase
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4. GW cycles comparison

(a) Contribution to the accumulated GW cycles due to ⌘ dependent terms.
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(b) Contribution to the accumulated GW cycles due to higher order terms in BHP phase.
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5. Phase and amplitude plots.

(a) Hybrid phase plot with BHP and PN phase:

4

System : M=1000 Msun, q=200


DECIGO-B : flow=0.01Hz, fup = flso


PN phase model : 3.5PN (circular) 3PN (Eccentric) 


BHP phase model : 12PN (circular) & 5PN (Eccentric)
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Likely to be more relevant for higher mass ratios 
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Impact of eccentricity on SNR
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Summary 

Compact binaries involving at least one IMBH and a stellar or 
supermassive BH can be classified as IMRIs and should be 
detectable by detectors in space and on ground. 


Analytical solutions from perturbative approaches in GR may be 
combined to obtain models that may help detect and extract 
properties of these sources. 


Based on simple SNR estimates, once may be able to infer the 
presence of higher modes and/or eccentric nature of the binary.  
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Gain in eccentricity
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Coherent inputs

Need for inspiral-merger-ringdown BBH waveforms

Inspiral-based templates are frequently used in searches involving

low mass binary systems (M < 12M�), contributions from merger

and ringdown phase becomes important for searching binary systems

involving more massive black holes.

High-mass BBH searches including those involving intermediate

mass BHs (50M� < M < 500M�) have been planned in the data

collected during the planned science runs of advanced detectors

which require accurate IMR modelling of BBHs.

Coherent IMR search: improving

the mass-reach and the detection

rates for various detectors.
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FIG. 1. Amplitude and frequency of selected modes from an eccentric NR simulation (SXS:BBH:1364) together with an
Eccentric post-Newtonian (PN) model are plotted. The eccentricity (mean anomaly) measured roughly ≥ 7 orbits before the
merger at a reference frequency of ≥ 0.075 is 0.044 (2.144) and binary’s mass ratio (q) is 2 (see Table I of [47] for details).
The PN model is evolved assuming an initial eccentricity of e0=0.108, and mean anomaly of l0=-2.495 (measured at an initial
frequency of x0=0.045 using the prescription of [42]). Since the mode amplitudes and frequencies are in reasonable agreements
for PN and NR waveforms in a time window of (1000M , 2000M) it should be possible to perform hybridization in this window.

and orbital phase, can be written as follows

hPN
¸m (t) = 2GM÷x

c2D

Ú
16fi

5 Ĥ¸m e
≠i mÏorb(t)

, (1)

where Ĥ¸m is amplitude of a given (¸, m) mode and
Ïorb(t) represents binary’s orbital phase. Symbols M

and D represent the binary’s total mass and its distance
from the observer while ÷ is given by the ratio of binary’s
reduced mass to total mass. Unless explicitly mentioned,
we work with G=c=1 and set M=1 M§, D=1 Mpc.

The PN expressions for mode amplitudes (Ĥ¸m)
contributing up to 3PN order for binaries with non-
spinning compact components in quasi-circular orbits
have been computed in Refs. [56–60]. In fact, some of
the leading modes are actually known (or can easily
be computed using available inputs) with higher PN
accuracy and contribute to relevant modes at higher PN
orders [61–64]. The orbital phase accurate to the 3.5PN
order has been computed in [65–67] (see Ref. [68] for a
review on the subject). Expressions for mode amplitudes
constituting 3PN inspiral waveforms assuming binaries
with non-spinning compact objects in quasi-elliptical
orbits have been computed in [40, 43, 44] by employing
generalised 3PN quasi-Keplerian representation of
[69, 70]. On the other hand a 3.5 PN prescription for the
orbital phase for an eccentric system has been presented
in Ref. [45] and is based on phasing formulation of
[71] and generalised quasi-Keplerian representation of
[70]. While the phasing of [45] includes contributions
due to binary’s reactive dynamics to relative 1PN
order (or absolute order of 3.5PN of phase), Ref. [41]
extends these results to the relative 3PN order under
the assumption that binary’s initial orbital eccentricity
is small (e0 . 0.2). In another e�ort [42] the results of
Ref. [72] were extended to the 2PN order and included
eccentricity to O(e6). While the results of Ref. [41]

should capture relativistic dynamics better (being more
accurate in PN sense) results of Ref. [42] should be
applicable to systems with larger eccentricities.

The NR simulations (describing the non-perturbative,
late-time evolution of eccentric BBH mergers) used here
have been performed using the Spectral Einstein Code
(SpEC) [73, 74] developed by the SXS collaboration and
are publicly available [75]. A set of 20 eccentric simu-
lations with varying initial eccentricities (e Æ 0.2) and
mass ratios (q = 1, 2, 3) were first presented in [47].3

Since the NR simulations we intend to compare PN re-
sults with, include waveforms with eccentricities as large
as 0.2, we have made use of the results of [42] while com-
paring the phase (and the angular frequency), due to
its ability to probe larger eccentricities compared to the
ones presented in Ref. [41]. As far as the amplitude
comparisons are concerned we make use of the PN mode
amplitudes computed in [43, 44]. We present the results
of these comparisons in the next section.

B. PN-NR comparison

Figure 1 compares the waveform data of a NR simu-
lation (SXS:BBH:1364) and related results from the PN
theory for a number of relevant modes. The colored lines
represent the NR data, mimicked closely in first few GW
cycles by the PN results that are displayed as black lines.
Close agreements between the PN and NR waveforms in
the inspiral part of the signal allow for hybridization dis-
cussed in the next section. However, we choose to ignore

3 See Table I of [47] for other relevant properties of these simula-
tions.

PN-NR comparisons

4

FIG. 2. PN-NR hybrid waveform corresponding to NR simulation SXS:BBH:1364, an asymmetric mass binary with mass
ratio q=2. The initial eccentricity of the constructed waveform is e0 = 0.108 at xlow = 0.045. The blue dotted line marks the
beginning of the NR waveform and the shaded grey region t œ (1000M, 2000M) shows the matching window where hybridization
was performed. Overlapping hybrid and NR waveforms on the left of the matching window, hint at the quality of hybridization
performed here.

20



Construction of Target WF
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Count Simulation Id q e0 l0 Norbs

1 SXS:BBH:1132 1 0.000 2.852 53.3
2 HYB:SXS:BBH:1355 1 0.127 2.739 40.8
3 HYB:SXS:BBH:1356 1 0.163 1.606 40.0
4 HYB:SXS:BBH:1357 1 0.222 -1.020 36.1
5 HYB:SXS:BBH:1358 1 0.226 -2.937 35.7
6 HYB:SXS:BBH:1359 1 0.227 1.850 36.3
7 HYB:SXS:BBH:1360 1 0.302 0.730 31.2
8 HYB:SXS:BBH:1361 1 0.305 1.146 31.0
9 HYB:SXS:BBH:1362 1 0.372 -0.726 25.5
10 HYB:SXS:BBH:1363 1 0.376 0.385 25.3
11 HYB:SXS:BBH:1167 2 0.000 1.308 48.4
12 HYB:SXS:BBH:1364 2 0.108 -2.495 46.3
13 HYB:SXS:BBH:1365 2 0.145 -1.116 44.9
14 HYB:SXS:BBH:1366 2 0.218 0.096 39.6
15 HYB:SXS:BBH:1367 2 0.220 -0.964 40.5
16 HYB:SXS:BBH:1368 2 0.222 -1.553 40.3
17 HYB:SXS:BBH:1369 2 0.367 -2.489 28.3
18 HYB:SXS:BBH:1370 2 0.367 0.754 28.8
19 HYB:SXS:BBH:1221 3 0.000 2.461 56.8
20 HYB:SXS:BBH:1371 3 0.133 -1.757 52.8
21 HYB:SXS:BBH:1372 3 0.212 -2.101 48.7
22 HYB:SXS:BBH:1373 3 0.214 -2.655 48.6
23 HYB:SXS:BBH:1374 3 0.359 -2.953 35.0

TABLE I. Hybrids constructed by matching NR simulations
from the SXS collaboration and available PN prescriptions
for BBHs in eccentric orbits. SXS simulation ids are retained
for identification with NR simulation used in the process of
construction of the hybrids. Each hybrid starts at an aver-
aged orbital frequency of x0 = 0.045 where eccentricity (e0),
mean anomaly (l0) are estimated. Mass ratio (q) and num-
ber of orbits prior to the merger are also listed. Norb has
been computed by taking the phase di�erence between the
start of the waveform and the peak of the (2, 2) mode ampli-
tude. The NR simulation, SXS:BBH:1132, is longer than the
hybrids constructed here and hence the NR data is directly
used.

the modes whose amplitudes relative to the ¸=2, |m|=2
or simply 22 mode is smaller by a factor of 10≠3 as they
may not be relevant for our purposes given their small
amplitudes. Additionally, we also demand that data for
each mode in the hybridization window should be rela-
tively clean. These two conditions limit the number of
modes that are to be included in the hybrids to (¸, |m|) =
(2,2), (2,1), (3,3), (3,2), (4,4), (4,3), and (5,5). Note also
that the m=0 modes (leading to non-linear GW mem-
ory; also known as DC modes) are not included as they
would not impact GW detection and parameter estima-
tion analyses [44, 76, 77] and are not extracted accu-
rately in NR simulations. On the other hand, the m ”= 0
mode include contributions from what are called oscilla-
tory memory which becomes relevant in the late stages
of binary evolution [44, 76]. These are included at 3PN

level in the PN inspiral waveforms of [44] that are used
in constructing the target hybrids.

C. Construction of hybrid waveforms

Complete inspiral-merger-ringdown (IMR) waveforms
are constructed by matching PN and NR waveforms for
individual modes in a region where the PN prescription
closely mimics the NR data following the method of
Ref. [78]. These are traditionally referred to as hybrids
and used as targets for modelling and data-analysis
purposes. As discussed in [78] construction of hybrids
including higher modes (in circular case) is possible by
performing at least two rotations (and a time-shift) so
as to align the frames in which PN/NR waveforms are
defined.4 We simply extend this argument to the case of
eccentric orbits assuming that the e�ect of marginalising
over parameters such as eccentricity and mean anomaly
will not significantly a�ect the hybridization. The
prescription for construction of hybrids is discussed in
detail in [78] and we reproduce some of the steps here
for completeness.

A least-square minimization of the integrated dif-
ference between the GW modes from the PN and NR in
a time interval (ti, tf), in which the two approaches give
similar results, is performed and can be defined as

” = mint0,Ï0,Â

⁄ tf

ti

dt

ÿ

¸,m

---hNR
¸m (t ≠ t0)ei(mÏ0+Â)

≠ hPN
¸m (t)

--- .

(2)
where the minimization is performed over a time-shift
(t0) and the two angles (Ï0, Â) as discussed above. The
hybrid waveforms are then constructed by combining the
NR data with the “best matched” PN waveform in the
following way:

hhyb
¸m (t) © ·(t) hNR

¸m (t ≠ t
Õ
0) e

i(mÏÕ
0+ÂÕ) + (1 ≠ ·(t)) hPN

¸m (t),
(3)

where (tÕ
0, Ï

Õ
0, Â

Õ) are the values of (t0, Ï0, Â) that min-
imize the integral of Eq. (2). In the above, ·(t) is a
weighting function defined by:

·(t) ©

Y
_]

_[

0 if t < ti
t≠ti
tf≠ti

if ti Æ t < tf

1 if tf Æ t.
(4)

The hybrids corresponding to a representative NR
simulation (SXS:BBH:1364) for all relevant modes
are shown in Fig. 2. The blue dotted line marks the
beginning of the NR waveform and the shaded grey

4 It is assumed that the third Euler angle can easily be fixed in
the direction of binary’s total angular momentum (See Fig. 2 and
the discussions in section III C of [78].)
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for identification with NR simulation used in the process of
construction of the hybrids. Each hybrid starts at an aver-
aged orbital frequency of x0 = 0.045 where eccentricity (e0),
mean anomaly (l0) are estimated. Mass ratio (q) and num-
ber of orbits prior to the merger are also listed. Norb has
been computed by taking the phase di�erence between the
start of the waveform and the peak of the (2, 2) mode ampli-
tude. The NR simulation, SXS:BBH:1132, is longer than the
hybrids constructed here and hence the NR data is directly
used.

the modes whose amplitudes relative to the ¸=2, |m|=2
or simply 22 mode is smaller by a factor of 10≠3 as they
may not be relevant for our purposes given their small
amplitudes. Additionally, we also demand that data for
each mode in the hybridization window should be rela-
tively clean. These two conditions limit the number of
modes that are to be included in the hybrids to (¸, |m|) =
(2,2), (2,1), (3,3), (3,2), (4,4), (4,3), and (5,5). Note also
that the m=0 modes (leading to non-linear GW mem-
ory; also known as DC modes) are not included as they
would not impact GW detection and parameter estima-
tion analyses [44, 76, 77] and are not extracted accu-
rately in NR simulations. On the other hand, the m ”= 0
mode include contributions from what are called oscilla-
tory memory which becomes relevant in the late stages
of binary evolution [44, 76]. These are included at 3PN

level in the PN inspiral waveforms of [44] that are used
in constructing the target hybrids.

C. Construction of hybrid waveforms

Complete inspiral-merger-ringdown (IMR) waveforms
are constructed by matching PN and NR waveforms for
individual modes in a region where the PN prescription
closely mimics the NR data following the method of
Ref. [78]. These are traditionally referred to as hybrids
and used as targets for modelling and data-analysis
purposes. As discussed in [78] construction of hybrids
including higher modes (in circular case) is possible by
performing at least two rotations (and a time-shift) so
as to align the frames in which PN/NR waveforms are
defined.4 We simply extend this argument to the case of
eccentric orbits assuming that the e�ect of marginalising
over parameters such as eccentricity and mean anomaly
will not significantly a�ect the hybridization. The
prescription for construction of hybrids is discussed in
detail in [78] and we reproduce some of the steps here
for completeness.

A least-square minimization of the integrated dif-
ference between the GW modes from the PN and NR in
a time interval (ti, tf), in which the two approaches give
similar results, is performed and can be defined as

” = mint0,Ï0,Â

⁄ tf

ti

dt

ÿ

¸,m

---hNR
¸m (t ≠ t0)ei(mÏ0+Â)

≠ hPN
¸m (t)

--- .

(2)
where the minimization is performed over a time-shift
(t0) and the two angles (Ï0, Â) as discussed above. The
hybrid waveforms are then constructed by combining the
NR data with the “best matched” PN waveform in the
following way:

hhyb
¸m (t) © ·(t) hNR

¸m (t ≠ t
Õ
0) e

i(mÏÕ
0+ÂÕ) + (1 ≠ ·(t)) hPN

¸m (t),
(3)

where (tÕ
0, Ï

Õ
0, Â

Õ) are the values of (t0, Ï0, Â) that min-
imize the integral of Eq. (2). In the above, ·(t) is a
weighting function defined by:

·(t) ©

Y
_]

_[

0 if t < ti
t≠ti
tf≠ti

if ti Æ t < tf

1 if tf Æ t.
(4)

The hybrids corresponding to a representative NR
simulation (SXS:BBH:1364) for all relevant modes
are shown in Fig. 2. The blue dotted line marks the
beginning of the NR waveform and the shaded grey

4 It is assumed that the third Euler angle can easily be fixed in
the direction of binary’s total angular momentum (See Fig. 2 and
the discussions in section III C of [78].)

4

FIG. 2. PN-NR hybrid waveform corresponding to NR simulation SXS:BBH:1364, an asymmetric mass binary with mass
ratio q=2. The initial eccentricity of the constructed waveform is e0 = 0.108 at xlow = 0.045. The blue dotted line marks the
beginning of the NR waveform and the shaded grey region t œ (1000M, 2000M) shows the matching window where hybridization
was performed. Overlapping hybrid and NR waveforms on the left of the matching window, hint at the quality of hybridization
performed here.
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FIG. 4. PN-NR hybrid waveform corresponding to NR simulation SXS:BBH:1364, an asymmetric mass binary with mass ratio
q=2, which has been used for constructing the models. The initial eccentricity of the constructed waveform is e0 = 0.108 at
xlow = 0.045. The eccentric inspiral waveform used for constructing the target hybrids for modelling are presented in [42].

FIG. 5. Amplitude and frequency model produced by combining an eccentric inspiral waveform with a circular merger-ringdown
waveform. (Left panel) The amplitude transitions smoothly from the inspiral to the merger-ringdown inside the shaded region,
ending at tmatch. (Right panel) The frequency transitions smoothly from inspiral to merger-ringdown, starting at tmatch, and
ending at 30M before merger.

for construction of the hybrids is discussed in Sec. II. We
use another set of hybrids here (constructed by simply
matching waveforms of [42] with NR simulations of [47])
as only a dominant mode target is required. A graph-
ical representation of this hybrid corresponding to the
simulation SXS:BBH:1364 is shown in Fig. 4. Overlap-
ping hybrid and NR waveforms outside (on the left of)
the matching window hint at the quality of hybridiza-
tion performed here. The inspiral part of the model is
the waveform presented in [42] while the quasi-circular
merger-ringdown part is described by the waveform from
EOB family discussed in [54]. Below we discuss the con-
struction of the model as well as present the analytical
prescription for the same.

A. Time-shift

As described in Sec. II C, the process of hybridization
involves minimization over a time shift. So when produc-
ing the amplitude model, we first perform a time shift of
the inspiral waveform relative to the circular IMR wave-
form, because we do not know the exact time to merger.
This is done by first setting the merger time for the cir-
cular IMR waveform to zero and then time sliding the

eccentric inspiral about the merger. We obtain a numer-
ical estimate of the time shift for each target hybrid and
denote it by tshift. Once the time shift is performed, the
amplitude and frequency model is generated using the
prescription as discussed in III B and III C respectively.

B. Amplitude model

As shown in the plots in Figure 1, the waveforms tend
to circularize near merger.5 Hence, in order to model
this e�ect we can suitably join the eccentric inspiral to
the circular IMR at an appropriate time tmatch. The am-
plitude model is obtained by joining the eccentric inspiral
with the circular IMR using a transition function over a
fixed time interval of 500M which ends at tmatch. Given
a target hybrid, we start with a trial choice of tmatch
roughly 500M§ before the merger and produce the am-
plitude model as given below

5 See also the discussion around Figure 3 of [47] which clearly
shows all NR simulations become circular 30M before the merger.
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FIG. 6. Numerical fits are mapped into the physical parameter space for eccentric systems characterised by binary’s eccentricity,
mean anomaly at a reference frequency and the mass ratio parameter q or ÷ depending upon the model. Circles represent the
numerical data points while crosses represent the value returned by the best-fit model.
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(6)

we set ti = tmatch ≠ 500M and tf = tmatch as the bounds
of the time interval over which the two waveforms are
joined. Figure 5 demonstrates the process. The grey
region is the time interval ending at tmatch where the
inspiral and circular IMR is joined.

After the amplitude model is obtained for a partic-
ular choice of trial tmatch, we combine it with the target
hybrid phase to obtain the polarizations, and then
calculate the match with the target hybrid. We then
change the trial choice of tmatch by 5M , bringing it
closer to the merger and repeat the process of producing
the amplitude model, and calculating the match. This
variation of tmatch is done till roughly 30M before
merger. We thus obtain a set of match values for varying
tmatch and pick the one which has the highest value
of match. The corresponding amplitude tmatch is the
numerical estimate for a particular target hybrid. We
obtain numerical estimates using the same process for
all the 20 target hybrids.

C. Frequency model

For the frequency model, we follow a similar proce-
dure as described in Sec. III B with the only di�erence
being the duration of the time interval where the inspi-
ral frequency is joined with the circular IMR frequency.
Once again, similar to the amplitude model procedure,
we determine an appropriate tmatch for joining the inspi-
ral frequency with the circular IMR frequency. However,

the time interval where the two are joined starts at tmatch
and ends at a time close to 30M

6 before merger. Just
like the amplitude model, we start with the choice of a
trial value of tmatch roughly 6000M before merger and
obtain the frequency model as given below

Ê
model
22 (t) © ·a(t) Ê

IMR
22 (t) + (1 ≠ ·a(t)) Ê

inspiral
22 (t), (7)

where, ·a(t) is as defined in Eq. (6) with the di�erence
being, ti = tmatch and tf . ≠30M . Figure 5 demon-
strates the process.

Once the frequency model is obtained for the choice
of trial tmatch, we calculate the phase by integrating
the frequency model. This is then combined with the
amplitude model obtained for the same target hybrid to
produce the polarizations and a match with the target
hybrid is calculated. We then change the trial choice
of tmatch by 1M , bringing it closer to the merger and
repeat the process of producing the frequency model,
and calculating the match. Once again we do this
variation till roughly 30M before merger to obtain a
set of match values for varying tmatch and pick the one
which has the highest value of match. The corresponding
value of frequency tmatch is the numerical estimate for a
particular target hybrid. We obtain numerical estimates
for all the 20 target hybrids using the same process.

D. Analytical model

We have described the procedure of producing (nu-
merical) time domain model fits for the dominant mode
model, where we used a set of 20 eccentric hybrids as
targets to calibrate our model. For each hybrid we ob-
tained a numerical estimate for tshift, amplitude tmatch,
and frequency tmatch. In order to be able to generate

6 This choice is motivated by the fact that all NR simulations
necessarily circularise 30M before the merger[47].
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FIG. 6. Numerical fits are mapped into the physical parameter space for eccentric systems characterised by binary’s eccentricity,
mean anomaly at a reference frequency and the mass ratio parameter q or ÷ depending upon the model. Circles represent the
numerical data points while crosses represent the value returned by the best-fit model.
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FIG. 7. (Top panel) Amplitude and frequency of the dominant mode model (constructed out of stitching an inspiral and a
merger-ringdown model) plotted together with target hybrids for comparison for three representative low eccentricity simula-
tions. (Bottom panel) One of the polarizations, obtained by combining the amplitude and the frequency model shown in the
top panel for q = 3 case, is shown as a visual proof of the quality of the model being presented.

FIG. 8. (Left panel) Mismatches between set of eccentric hybrids presented in Table I and the dominant mode model presented
in Sec. III. (Right panel) Mismatches between the dominant mode model of ENIGMA [49] and the model presented here.
The two horizontal lines report 96.5% and 99% agreement, respectively. The eccentricity values displayed with color bars are
computed at x0 = 0.045 for all hybrids.

waveforms for an arbitrary configuration these numeri-
cal fits need to be mapped into the physical parameter
space for eccentric systems characterised by binary’s ec-
centricity, mean anomaly at a reference frequency and
the mass ratio parameter. In this section we determine
a functional form by performing analytical fits to these
numerical estimates. The fitted functions obtained are of
the form

tshift (q, e, l) =
ÿ

–,—,“,”

A–—“” e
–

q
— cos(“ l + ” e l + a–—“”)

(8)

for time shift, where A–—“” = a–—“” = 0 for – + — > 4
and/or “ +” > 1, and A–010 = A–001 = A0—10 = A0—01 =
A00“” = a–—00 = 0.

tmatch (÷, e, l) =
ÿ

–,—,“,”

B–—“” e
–

÷
— cos(“ l + ” e l + b–—“”)

(9)

for amplitude, where B–—“” = b–—“” = 0 for – + — > 4
and/or “+” > 1, and B–010 = B–001 = B0—10 = B0—01 =
B00“” = b–—00 = 0.

23



Eccentric Population

24

[Zevin et al., ApJL, 921 L43 (2021)]

4 Zevin et al. 2021

Figure 1. Eccentricity distributions for detectable BBH mergers assuming perfectly-matching templates (gray shade), circular
templates (solid lines), and neglecting detection probabilities pdet altogether (dashed lines). Colored lines denote whether the
BBH system was ejected from the cluster (blue), merged inside the cluster between strong dynamical interactions (orange), or
merged as a capture during a strong gravitational encounter (green). The di↵erence between the background gray histogram and
solid-line histogram for the GW capture population shows the systems that are “missed” by searching with circular templates;
this recovered fraction is also shown in the inset panel as a function of eccentricity. The detectable distribution assuming circular
templates is normalized to the detectable distribution assuming perfectly-matching templates to better visualize this di↵erence,
and thus the solid line histograms integrate to slightly less than unity. The pink shaded region marks systems with e10Hz > 0.05,
the approximate eccentricity requirement for distinguishing GW150914-like systems from circular. Ejected mergers are more
prevalent in the detectable distribution because more massive systems are ejected earlier in the history of the cluster and have
longer inspiral timescales so that they can readily merge in the local universe.

In addition to the detection probability of eccentric
sources, another important aspect of this analysis is de-
termining the minimum eccentricity that is required for
parameter estimation routines to be able to confidently
distinguish a system as eccentric. For systems with
properties similar to GW150914, Lower et al. (2018)
found this threshold eccentricity to be ethresh ' 0.05.
This is consistent with the eccentricity upper-limits for
GWTC-1 events from Romero-Shaw et al. (2019). Due
to the computational expense of performing eccentric
parameter estimation over a wide range of source pa-
rameters, we choose to adopt a threshold eccentricity of
ethresh = 0.05 for this analysis, where ethresh is likewise
defined at a reference GW frequency of 10 Hz. At this
threshold, ' 7% of the potentially detectable distribu-
tion of cluster binaries have e10Hz > ethresh. We find

that reasonable variations in this parameter only lead
to di↵erences of order unity for our main results.

4. IMPLICATIONS OF ECCENTRIC DETECTIONS

Accounting for eccentricity in the selection e↵ects
a✏icting the cluster population alters the detectable
population. Under the assumption that matched-filter
searches are the only means of detection (i.e., using cir-
cular templates for determining the detection probabil-
ities as shown with the green line in Figure 2), we find
a steep decrease in recovered systems for e10Hz & 0.1;
see the inset of Figure 1. Using ethresh = 0.05 as the
characteristic threshold for systems that will be measur-
ably eccentric, we find that only 56% of systems with
e10Hz � ethresh will be recovered using matched-filter
searches. Thus, measurably eccentric systems from clus-
ters make up ' 4% of the detectable distribution of


