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Motivation

Xk V27 SYM is integrable in the planar limit.

X Is it the only* integrable theory in 4D?
3 What happens when we have less supersymmetry?

3k Can we do this in an organised way?



The past

3 People believe that . A 2 theories are not integrable.

3k They do not obey the usual YBE. [1006.0015 Gadde, EP, Rastell]

%k Does this kill integrability? No!
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Integrable models

3k Rational (like XXX based on SU(2))
3 Trigonometric (like XXZ based on SU(2)q)

3K Elliptic (like XYZ based on SU(2)q.1)

X There are also hyper-elliptic examples (chiral potts model)



Elliptic models

X Depending on the basis we use, elliptic models do not have

to obey the standard YBE but a modified, dynamical YBE.
[Felder 1994]

X In the “Baxter basis” (where the usual YBE is obeyed) there

IS no highest weight state.

3k SCFTs have BPS operators which correspond to the highest

weight states. They are naturally not in the “Baxter basis”.



[Drinfeld 1990]

Quasi-Hopf algebras

3k More structure beyond elliptic models and the dynamical YBE.

X Drinfeld twist: quasi-Hopf algebras, quasi-Hopf YBE

R12<I>312R13<I>1_312R23<I>123 = ¢321R23<I>2_311R13<I>213R12

3 When the Drinfeld twist obeys the so called shifted cocycle

condition, we get elliptic models and the dynamical YBE.



N2 92 SCFTs

3 Lagrangian V2.2 SCFTs are classified. [Bhardwaj, Tachikawa 2013]

3K Most of them can be obtain via orbifolding .A># SYM and then

marginally deforming.
3 We know the gravity duals for marginally deformed orbifolds.
3 At the orbifold point (no marginal deform.) they are integrable.

[Beisert,Roiban 2005]

3 Only understand how marginal deformations affect spin chains.



Our main example
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Z> orbifold A2 7 SYM and then marginally deform away from the

orbifold point (g1=Q0>) Bifundamental

i i Adjoint
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Q21 ’ Q21 ’ 7?

Adjoint
3k Enough to discover all novel features (dynamical, elliptic ...).

¥k When go — 0 gives . V2.2 SCQCD in the Veneziano limit (N=2Nc).



The Plan of the talk

3k The (one-loop) spin chains of 422 SCFTs are dynamical.

%k V2 2 SCFTs enjoy a quasi-Hopf symmetry algebra.

3 R-matrix in the quantum plane limit and the Drinfeld twist.
3 Non-trivial dynamical twist/coproduct.

3 The spectrum organises in quantum “SU(4)” multiplets.



(One-loop)
dynamical
spin chains



The Hilbert space

N2> SYM spin chain states: distribute on the lattice sites a “single letter”
from the unique ultrashort singleton multiplet
V=D"(X,Y, 7, X, 7, Z, X, X§, Fap, Fup)
All single letters are in the adjoint representation of the color group.
: L
The total spaceis ®,'Vy .

V2 2 SCFTs spin chain states: two distinct ultrashort re_presentations:
V=D"(¢, X, Fap)s » H=D"(Q%, %, %)

In the adjoint and bifundamental representation of the color group G+ X G2 X --.

The color index structure imposes restrictions on the total space! ®LVg
Which up to recently we didn’t know how to efficiently account for. ¢

Q12 Q21 allowed, Q12 Q12 not allowed, $1Q12 allowed, $2Q12 not allowed!



XY sector: an alternating spin chain

Every 27 SYM spin chain state ‘XYXYYX s e >

Gives two . ¥2.2 spin chain states

Which are Z> conjugate

(k states for a rank k orbifold)

Q12Q21Q12Q21Q12Q21 - -+ )

Dl Xig DQ X ﬁl Dl XEQ |:|2 X il Dl XEQDQ X il

Q210Q12Q21Q12Q21Q12 - - )

|:|2 X ﬁl |:|1 XEQ |:|2 X ﬁl |:|1 XEQVDQ X il Dl Xiz

To identify which of the two states we have, it is enough to specify the
gauge group of the first color index. This can be done by labelling

XYXYYX---)

1=1,2



The XY sector Hamiltonian

The one-loop Hamiltonian:
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Dynamical XXX




XZ sector: dynamical spin chain

Every N2 SYM spin chain state |XZXZZX s e >

Gives two . V2 2 spin chain states \Q12¢2Q21gb1¢1@12 ce )

(g x T Oy x Ty 0o x 010y x Ty 0y x 0y Oy x0a
Which are Z> conjugate ‘Q2D1¢1QD212¢2¢2Q21 >

(k states for a rank k orbifold)

We specify the gauge group of the first color index and identify which of
the two states we have. This can be done by labelling

XZXZZX ---)



The XZ sector Hamiltonian

The one-loop Hamiltonian:
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Elliptic from dynamical

Old idea: elliptic R matrices from trigonometric ones by ‘averaging’.
[Jimbo, Konno, Opake, Shiraishi 1997]

3k Originally discovered ellipticity via explicit coordinate Bethe ansatz (Q-vaccuum)

[Rabe, EP, Zoubos 2021]

3k New computation: 3-body coordinate Bethe ansatz (¢-vaccuum)
[Bozkurt, EP in preparation]

At the level of the R matrix, the dynamical parameter of
Felder keeps track of the color indices!

Our model is more intricate than Felder: when we cross a Z (field in the
adjoint rep) we don’t want to shift the dynamical parameter.

It is a dilute RSOS/CSOS model.

The holomorphic SU(3) sector is captured by a dynamical
15-vertex model which is specified by the adjacency graph,
which is the dual to the brane-tiling diagram of the quiver theory.




Quasi-Hopf
symmetry




The Manin quantum plane
qry = yx

Can be obtain from an R-matrix: qg O 0 0
R—q* 0 1 g—qgt 0

b ab j - 0 0 1 0
'zt = R T e = S

The quantum plane is invariant under the transformations ’* = tijg;j :

They obey SU(2), which is obtained using the Rtt relations:

thts = ththy, thth —thth = (¢! — @)tht}

tht'y = ¢ tth , thth = ¢ TtAth , thth = ¢ thth , t5t%, = ¢t



3D quantum planes classified

[Ewen,Ogievetsky1994]
Parameterise using two tensors Eix and Fijx:

o, i o Y —
Eix'e) =0 wuu; by =0

Quantum plane Quantum co-plane

The R-matrix is given by: Rkl = (Skdj C Eklmem

A

R=PR

Using this R-matrix we get back the right quantum plane relations and
through the Rtt relations we can write down the quantum algebra.
The R-matrix encodes symmetries of the quantum plane.



[Roiban2004] [Berenstein,Cherkis2004] ... [Mansson,Zoubos2008] ... [Dlamini,Zoubos2016&19]

Leigh-Strassler theory

H1 02 = g2l — h(¢3)? Whar=4 = g'Tr {Cbl[q)2, @3]} = %eijkTr {CIDiCI)jCI)k}
$¢° = q6°6? — h(g!)? J
$°¢' = q¢'¢® — h(¢°)° Wi = % B, Tr{® 0 oF)

3D Quantum plane o
The quantum co-plane: hermitian conjugate: F%“* =F

ijk
E E E ! ke ke
8= 1= /IEof= = . . . . . a
9 The Hamiltonian is obtained by: H" = E,,,,,F"
E321 = Eg13 = F132 = gt
h . Nty st s) ijm
Fi11 = Eggo = E333 = E A The R'matrlx. Rkl e 5]{;5£ & EklmF
- 14+-qG—hh 0 0 0 0 —2h 0 2hq 0
2o lfaat hh 0 2q 0 1—qg+hh 0 0 0 0 2hq
2 0 0 2q 0 —2h 0 qG+hh—1 0 0
1 0 qG+hh—1 0 2q 0 0 0 0 —2h
R= 35 0 0 2hq 0 1+qg—hh 0 —2h 0 0
2hg 0 0 0 0 27 0 1—qG+hh 0
0 0 1—qg+hh 0 2hq 0 27 0 0
—2h 0 0 0 0 qG+hh—1 0 2q 0
0 —2h 0 2hq 0 0 0 0 14+qG—hh

The Lagrangian is invariant under the transformations & — t'.®
which form a quantum version of SU(3) defined by the Rtt relations.




AdS point of view

Gravity dual reason why we have a quantum algebra:

NSNS B-field turned on the C? (transverse to the D3).

When there is a B-field the open strings ending on

the D3 branes see a non-commutative geometry. [Seiberg,Witten1999]
Open strings see a quantum plane!

3k For the Leigh-Strassler background [Kulaxizi 2006]

3k Marginally deformed orbifolds also have a B-field on the orbifolded C2cC?3
(transverse to the D3) allowing us to go away from the orbifold point:

1, 1 _ 1 g _ B . _
2 g2 = 2nmgs 2 — I8 with 8 = [¢ Bng

[Gadde, EP, Rastelli 2009]

Q



The Z2 quiver quantum group

Wi—s = gTr {®'[?, %]} = %eijkTr R

il

There are two copies (images) W — E(l,zTr (XZ'XJX’“) gt 1sz2 (XinXk)
of the quantum plane: j ij

XY- 91Q12Q21 = 91Q12Q21 ,  §2Q21Q12 = 92Q21 Q12
1
XZ: ¢2Q21 = ;Q21¢1 . $1Q12 = KQ1202
_ 1~ _ _
YZ: 2021 = EQQl(bl ;. $1Q12 = KQ 1202

1 1 1 1
E%z?z =01, E§3)1 =92, E?E1)2 =01, E£3)2 = —g2 7E:§2)1 = -0 ,Eéga =0

2 2 2 2 2 2
E%Zé = 92 ,E§3)1 =0 ,E:(n)z = 92 7E§3)2 = -0 7E1()>2)1 = —02 7E§12)> =92

(k images for a rank k orbifold)

RY = 6167 — ¢ By 9™




The Z2> quiver quantum group

XY sector the Re1: the SU(2) that rotates X and Y is unbroken (indeed true)

XZ nontrivial R: the SU(2) that rotates X and Z is naively broken (not lost but
upgraded to quantum)

10 0 00 O 0 O
(0 25 —:i;}oo 0 0 0\ 8 x 8 because of the two copies!
05 3200 0 0 0 . .
o0 o 10 o o o| TheRttrelations define the
B=1o 0 0 01 0 0 o0 t SU(2
uantum grou
00 0 00 35 5=o 9 group ( )Hs
00 0 00-57 250 Two copies SU(2)x and SU(2)1/«!
\0 0 0 00 0 0 1
o (1 0 0000 O 0\
For the XZ sector the R-matrix is 0 a BOOO 0 0
generated by a Drinfeld-twist: 0-a000 0 0
s_|00 010000
- = —2 000010 00
R= Ity = (i) 00 000a—B0
000008 a 0
A quasi-Hopf symmetry algebra! \® © 0000 0 1)

with:

b=

k+1

- V2v/1+K2

k—1
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Understanding the
twist/coproduct




The Z2 quiver has extra symmetry

& Change of basis to a simpler twist, where the coproduct takes the form
e i " . A
AR 5y = KII X I jar it P KII [Ihry 2008]

and is easily generalised to any number of sites. [Garus 2017]

& The superpotential is invariant under the quantum “SU(3)«” symmetry.

& The SU(3)« has in it the XZ “SU(2)” (as well as the YZ “SU(2)<").

& The action of the generators of the SU(3)« (and the full SU(4)«) on fields is
inherited from .V~ SYM (orbifold point). But now groupoid!

& The spectrum organises in multiplets of the quantum “SU(4)«”.

[2302.xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]



The Z2 quiver has extra symmetry

Example of an SU(2)x multiplet

Q12Q21 <. C921
Ao™ ( ) Ao~
This SU(2) was /43_%@12 Qa0 + H%Qm o Q2101Q12 + -+ %%%Qm Qe
known to be broken!
Ao™T Ao~
From the point of view Aot Ao~

1

Qi2¢2 ... P2+ -+ + Hf+%_1¢1 o 01Q12
Aot ( \) Ao~
P1 ... P

of A2 2 representation

theory, these operators
are unrelated!

i
|t~

Y

The kappa symmetrised
operators (eigenvectors) we can
also obtain by direct diagonalisation

of the one-loop Hamiltonian. [2302.xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]



The Z2 quiver has extra symmetry

The stress energy tensor
multiplet of .A27 breaks
into 422 multiplets.
Nonetheless, the naively
broken generators get
upgraded to quantum
generators. With the new

coproduct allow us to -1+

have one multiplet!

—1

0 1/2 1

D,
D, 2
\Mg / \ My
MY T M{{
_|_
VAN
D1
D, 2

The D multiplets drop after you trace. 12302 xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]



Conjecture

%k The . N<# theories which can be obtained via orbifolding,
orientifolding, ... the mother . A2# SYM theory, enjoy a

quantum deformation of the “SU(4)” R-symmetry of the
mother theory and possibly a quantum PSU(2,2|4).

3k The naively broken generators of SU(4) = U(.4") get
upgraded to quantum generators.

... any susy breaking that is due to R-symmetry breaking.



3D g-planes and . V< 7 SCFTs
D3 4 R° = 4’ CYscone

N27 SYM NZ4 gauge theories

XK N« 7 theories: F-terms: define (complex 3D) quantum planes.

3 Can read off the R-matrix at the quantum plane (Braid) limit.

3 The Rtt relations: give us the quantum group.

3 From R-matrix: Drinfeld twist and the quasi-Hopf symmetry algebra.
3 Translate to a “dynamical twist”. Then it is easy to write the coproduct

for any number of sites, it is possible to check the invariance of the
Lagrangian and look for the quantum “SU(4)” multiplets.



Where we currently are

3K Studying a large class of . /2.2 SCFTs. (A-type orbifolds)

X More multiplets, also non-BPS, 6x6=1+15+20’, 6x6x6= 50+10+...
3 The SU(3) scalar sector as a dynamical 15-vertex model.

3 Elliptic nature via an explicit 2-body coordinate Bethe ansatz

(Q-vacuum). X X
Ei(p; k) = - + K+ ;\/(1 + K2)2 — 4k2sin’ p

3k Explicit 3-body coordinate Bethe ansatz (p-vacuum).
The Yang operator (seems to obey a type of YBE)

[in preparation with Deniz Bozkurt]



Where are we going?

3k How to go from 2- to 3-sites: Derive the co-cycle condition.
3 This will formally answer the Integrability question.
3 Boost operator program for DYBE! (First the alternating XY!)

[with de Leeuw, Retore, Zoubos]

% All-loops S-matrix and hopefully integrability.

3k Detailed study of more .¥2.2 SCFTs and . V27 SCFTs.

3 The SU(3) scalar sector as a dynamical 15/19-vertex model.



Outlook

3k Study the gravity dual of marginally deformed orbifolds!

X “4D Chern-Simons” approach [1709.09993 Costello, Witten, Yamazaki]

¥ Generalize [2104.08263 Gaberdiel, Gopakumar] [2206.08795 Gaberdiel, Galvagno]

To the quantum string Dual to Free . A2 2 SCFTs.






