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Motivation

  N=4 SYM is integrable in the planar limit.


  Is it the only* integrable theory in 4D?


 What happens when we have less supersymmetry?


 Can we do this in an organised way?



 People believe that N=2 theories are not integrable.


 They do not obey the usual YBE.


 Does this kill integrability? No!

The past
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Since the discovery of the Yang-Mills instantons as topologically nontrivial field con-

figurations that minimize the Yang-Mills action in four-dimensional Euclidean spacetime

[? ], many important developments on the applications of instantons arose in both physics

[? ? ? ] and mathematics [? ? ]. In the Atiyah-Drinfield-Hitchin-Manin (ADHM) con-

struction [? ], the moduli space of Yang-Mills instantons on R4 is given as a hyper-Kahler

quotient. In addition, the ADHM construction can be derived in a physically intuitive way

using string theory [? ? ? ]. For example, the moduli space Mn,k of SU(n) instantons

of charge k is given by the Higgs branch of the supersymmetric gauge theory living on k

D1-branes probing a stack of n coincident D5-branes in type IIB superstring theory. To

avoid the noncompactness of Mn,k due to small instantons, Nakajima introduced a smooth

manifold fMn,k, which can be obtained from the Uhlenbeck compactification of Mn,k by

resolving the singularities [? ]. Thereafter Nekrasov and Schwarz showed that fMn,k can

be interpreted as the moduli space of U(n) instantons on noncommutative R4 [? ], and can

be realized in string theory by turning on a nonzero constant background B-field [? ].

The moduli space fMn,k admits a U(1)2 action which stems from the rotation symmetry

of the spacetime R4, and a U(n) action which rotates the gauge orientation at infinity.

Although fMn,k is noncompact, because the instantons can run away to infinity of the
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Integrable models 

 Rational (like XXX based on SU(2))


 Trigonometric (like XXZ based on SU(2)q)


 Elliptic (like XYZ based on SU(2)q,t) 

 There are also hyper-elliptic examples (chiral potts model)



Elliptic models
  Depending on the basis we use, elliptic models do not have 

to obey the standard YBE but a modified, dynamical YBE.

  In the “Baxter basis” (where the usual YBE is obeyed) there 

is no highest weight state.

 SCFTs have BPS operators which correspond to the highest 
weight states. They are naturally not in the “Baxter basis”.

[Felder 1994]



Quasi-Hopf algebras

  Drinfeld twist: quasi-Hopf algebras, quasi-Hopf YBE

  When the Drinfeld twist obeys the so called shifted cocycle 

condition, we get elliptic models and the dynamical YBE.

 More structure beyond elliptic models and the dynamical YBE.

[Drinfeld 1990]



N=2 SCFTs
 Lagrangian N=2 SCFTs are classified. 


 Most of them can be obtain via orbifolding N=4 SYM and then 

marginally deforming.


 We know the gravity duals for marginally deformed orbifolds.


 At the orbifold point (no marginal deform.) they are integrable.


 Only understand how marginal deformations affect spin chains.

[Bhardwaj,Tachikawa 2013]

[Beisert,Roiban 2005]



 Z2  orbifold N=4 SYM and then marginally deform away from the 

orbifold point (g1=g2) 

Our main example
 The Z2 quiver theory 

SU(N)xSU(N)
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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QÎ =
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 Enough to discover all novel features (dynamical, elliptic …). 

 When g2        0  gives N=2 SCQCD in the Veneziano limit (Nf=2Nc).

Bifundamental Adjoint

Adjoint



The Plan of the talk
 The (one-loop) spin chains of N=2 SCFTs are dynamical.


 N=2 SCFTs enjoy a quasi-Hopf symmetry algebra.


 R-matrix in the quantum plane limit and the Drinfeld twist.


 Non-trivial dynamical twist/coproduct.


 The spectrum organises in quantum “SU(4)’’ multiplets.



(One-loop) 
dynamical  
spin chains



The Hilbert space
N=4 SYM spin chain states: distribute on the lattice sites a “single letter” 
from the unique ultrashort singleton multiplet 


All single letters are in the adjoint representation of the color group.       
The total space is         .    .     

N=2 SCFTs spin chain states: two distinct ultrashort representations: 


In the adjoint and bifundamental representation of the color group G1 x G2 x …

The color index structure imposes restrictions on the total space! 
Which up to recently we didn’t know how to efficiently account for.

Q12 Q21 allowed,  Q12 Q12 not allowed, φ1Q12 allowed, φ2Q12 not allowed!



XY sector: an alternating spin chain

Every N=4 SYM spin chain state
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where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0
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0
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(2.7)
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Gives two N=2 spin chain states

(k states for a rank k orbifold)

Which are Z2 conjugate
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
spond to two states |Q12Q21�1Q12�2�2 · · · i and its Z2 conjugate |Q21Q12�2Q21�1�1 · · · i

depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X,Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of the
first site where the Hamiltonian acts. The major difference from the XY sector is that the
gauge group does not change on crossing a Z field. We write:
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where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
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the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.

– 6 –

1 2

Q12

Q21

eQ21

eQ12�1 �2

Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .
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Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.

– 6 –

1 2

Q12

Q21

eQ21

eQ12�1 �2

Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .
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This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.5)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.

Q12 eQ21

Q12 eQ21

g21

Q12 eQ21

eQ12 Q21

�g21

eQ21 Q12

eQ21 Q12

g22

eQ21 Q12

Q21 eQ12

�g22

eQ12 Q21

eQ12 Q21

g21

eQ12 Q21

Q12 eQ21

�g21

Q21 eQ12

Q21 eQ12

g22

Q21 eQ12

eQ21 Q12

�g22

Figure 2. The vertices contributing to the Hamiltonian in the XY sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.
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To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =
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QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =
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where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0

0 �1
��1

0

0 ��1 �1
0

0 0 0 0

1

CCCA
and H2 =

0

BBB@

0 0 0 0

0  � 0

0 �  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XY

Y X

Y Y

1

CCCA

i=1,2

(2.7)

– 8 –

H`,`+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �1
��1

0 0 0 0 0

0 ��1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0  � 0

0 0 0 0 0 �  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12Q̃21

Q̃12Q21

Q̃12Q̃21

Q21Q12

Q21Q̃12

Q̃21Q12

Q̃21Q̃12

1

CCCCCCCCCCCCA

(2.6)

where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0

0 �1
��1

0

0 ��1 �1
0

0 0 0 0

1

CCCA
and H2 =

0

BBB@

0 0 0 0

0  � 0

0 �  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XY

Y X

Y Y

1

CCCA

i=1,2

(2.7)

– 8 –

H`,`+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �1
��1

0 0 0 0 0

0 ��1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0  � 0

0 0 0 0 0 �  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12Q̃21

Q̃12Q21

Q̃12Q̃21

Q21Q12

Q21Q̃12

Q̃21Q12

Q̃21Q̃12

1

CCCCCCCCCCCCA

(2.6)

where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0

0 �1
��1

0

0 ��1 �1
0

0 0 0 0

1

CCCA
and H2 =

0

BBB@

0 0 0 0

0  � 0

0 �  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XY

Y X

Y Y

1

CCCA

i=1,2

(2.7)

– 8 –

H`,`+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �1
��1

0 0 0 0 0

0 ��1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0  � 0

0 0 0 0 0 �  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12Q̃21

Q̃12Q21

Q̃12Q̃21

Q21Q12

Q21Q̃12

Q̃21Q12

Q̃21Q̃12

1

CCCCCCCCCCCCA

(2.6)

where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0

0 �1
��1

0

0 ��1 �1
0

0 0 0 0

1

CCCA
and H2 =

0

BBB@

0 0 0 0

0  � 0

0 �  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XY

Y X

Y Y

1

CCCA

i=1,2

(2.7)

– 8 –

H`,`+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 �1
��1

0 0 0 0 0

0 ��1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0  � 0

0 0 0 0 0 �  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12Q̃21

Q̃12Q21

Q̃12Q̃21

Q21Q12

Q21Q̃12

Q̃21Q12

Q̃21Q̃12

1

CCCCCCCCCCCCA

(2.6)

where the indices `, ` + 1 denote the nearest neighbour sites of the spin chain. Note that
the basis is 8-dimensional instead of 16-dimensional as one would expect given our four
fields. The remaining combinations of fields cannot occur, as they are not allowed by the
gauge structure (for e.g. a Q12 cannot be followed by a Q12 or Q̃12). We have chosen this
truncated basis such that the upper left block of the Hamiltonian corresponds to the first
gauge group to the left of the first site where the Hamiltonian acts. In other words, the
upper left block acts on two bifundamental squarks which are contracted or in the singlet
representation of the second gauge group and have their indices open which means that they
are in the bifundamental representation of the first color group (⇤1 ⇥ ⇤1). On the other
hand, the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (⇤2⇥⇤2) and are color contracted with respect to the
first color group. We emphasise that, although the Hamiltonian looks block-diagonal, this
is an artifact of the notation. The same fields appear in both blocks, and thus the upper
and lower blocks of the Hamiltonian will mix when acting on a spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2N⇥2N fields X,Y instead of their component
fields. A spin chain state such as |XYXY Y X · · · i in the N = 4 picture can be decomposed
into two states, in this case

���Q12Q̃21Q12Q̃21Q̃12Q21 · · · i and
���Q21Q̃12Q21Q̃12Q̃21Q12 · · · i in

the N = 2 picture. These states can of course be mapped to each other by exchanging the
gauge groups. In the XY picture, which of the two chains we are considering is uniquely
defined by specifying the gauge group to the left of a given site of the chain (meaning the
first index of the bifundamental field at that site). Without loss of generality we can take
this reference site to be the first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the XY basis. Whether we are on the upper or lower block again de-
pends on which gauge group is to the left of the first site we are acting on. We call these
Hamiltonians H1 and H2, with

H1 =

0

BBB@

0 0 0 0

0 �1
��1

0

0 ��1 �1
0

0 0 0 0

1

CCCA
and H2 =

0

BBB@

0 0 0 0

0  � 0

0 �  0

0 0 0 0

1

CCCA
, in the basis

0

BBB@

XX

XY

Y X

Y Y

1

CCCA

i=1,2

(2.7)

– 8 –
Two alternating XXX 
Hamiltonians with 
different overall 

coefficients κ and 1/κ 

Dynamical XXX

Prepared for submission to JHEP DESY 21-087

Tetrahedron instantons

Elli Pomoni,a Wenbin Yanb and Xinyu Zhanga,c

a
DESY, Theory Group, Notkestrasse 85, Building 2a, 22607 Hamburg, Germany

b
Yau Mathematical Sciences Center, Tsinghua University, Beijing, 10084, China

c
New High Energy Theory Center and Department of Physics and Astronomy,

Rutgers University, Piscataway, New Jersey 08854, USA

E-mail: elli.pomoni@desy.de, wbyan@tsinghua.edu.cn,

xinyu.zhang@desy.de

Abstract:

 = g2
g1

|XZXZZX · · · i |Q12�2Q21�1�1Q12 · · · i
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
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, (2.11)

where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:

Hi,i+1 =

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0  �1 0 0 0 0 0

0 �1 �1
0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 �1
�1 0

0 0 0 0 0 �1  0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, in the basis

0

BBBBBBBBBBBB@

Q12Q21

Q12�2

�1Q12

�1�1

Q21Q12

Q21�1

�2Q21

�2�2

1

CCCCCCCCCCCCA

. (2.10)

As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =
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– 9 –

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
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will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.
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In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:
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As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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Figure 1. The Z2 quiver. The color groups are denoted by blobs representing the field content of
the N = 1 vector multiplets inside the N = 2 vector multiplets. We use N = 1 language for the
hypermultiplets. The arrow to the right is QÎ while the arrow to the left is Q̃Î .

To describe the field content of the theory we consider the Z2 orbifold of N = 4 SYM,
see [7] or the recent review [13] for more details. We start with the 2N ⇥ 2N color matrices
in the mother N = 4 theory, which, in N = 1 language, contains three chiral superfields
X,Y, Z in the adjoint of the SU(2N) gauge group. The action of the Z2 is chosen such as to
preserve N = 2 supersymmetry, which means that it only acts on a |||C

2 of the |||C
3 transverse

space spanned by the three complex scalar fields. The orbifold procedure projects out some
N ⇥N blocks of these fields [32], so that after the projection they look like

X =

 
Q12

Q21

!
, Y =

 
Q̃12

Q̃21

!
, Z =

 
�1

�2

!
. (2.1)

where we indicate the surviving N ⇥N blocks. After the orbifold the gauge group is now
SU(N)⇥ SU(N). We see that while on Z it acts diagonally and thus keeps us on the same
node of the quiver, on X takes us clockwise around the quiver while on Y anticlockwise.10

From the surviving N⇥N blocks, Q12 and Q̃12 have the same bi-fundamental color structure
⇤1⇥⇤2, and the same is the case for Q21 and Q̃21 but with the opposite orientation ⇤1⇥⇤2.
Thus, we can put them together in a doublet of an extra SU(2)L with index Î, as follows

QÎ =

⇣
Q12 , Q̃12

⌘T
and Q̃Î =

⇣
Q̃21 , Q21

⌘T
. (2.2)

The superpotential is explicitly invariant under the extra SU(2)L rotating the doublets of
SU(2)L in (2.2) and can be written as

WZ2 = ig1 tr2
⇣
Q̃Î�1QÎ

⌘
� ig2 tr1

⇣
QÎ�2Q̃

Î
⌘

(2.3)

or more explicitly as

WZ2 = ig1 tr2( eQ21�1Q12 �Q21�1
eQ12)� ig2 tr1(Q12�2

eQ21 �
eQ12�2Q21) . (2.4)

This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction

which are much more difficult to treat. In this work we will not consider this limit, but rather the spin
chain at generic values of , which can be thought of as a regularisation of the SCQCD spin chain.

10This distinction is not very important here as there are only two nodes, but it becomes more relevant
for Zk quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in Figure 13.
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This second more explicit form may be more intuitive for some readers as it is easy to
remember that the bifundamental fields Qij and Q̃ij are labelled according to the direction
of the arrows. For instance, Q12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (⇤1 ⇥⇤2). (⇤2 ⇥⇤1).

We already wish to indicate that we have the choice of working in the daughter N = 2

SCFT picture (with our single letter basis composed of the six fields �i and Qij , Q̃ij) or in
the mother N = 4 SYM picture where the single site basis is made out of X,Y, Z . We
will mostly use the latter as it allows us to simplify the discussion. As we will see, the
information of whether we are working with the upper or lower component of a given field
in the N = 4 picture will be provided by a dynamical parameter �.

2.2 The Hamiltonian

In this paper we will focus on the one-loop holomorphic SU(3) sector of the Z2 quiver. In
the mother N = 4 SYM this sector is made up of three complex scalar fields X,Y, Z in
the adjoint of the SU(2N) gauge group. The planar Hamiltonian of this theory has been
derived, for the full scalar sector, in [7]. We begin by visually rederiving the Hamiltonian
in two SU(2)-like sectors, the one formed by the fields X and Y and the one formed by X

and Z, so that we can highlight the difference between these sectors.

The XY sector
This is the sector which includes all the (holomorphic) bifundamental fields. To derive

the Hamiltonian, let us start by considering the �i F-terms:

F�1 = ig1(Q12
eQ21 �

eQ12Q21) , F�2 = ig2(Q21
eQ12 �

eQ21Q12) (2.5)

From the potential FF̄ , following the treatment in e.g. [43], we can immediately draw the
vertices contributing to the one-loop Hamiltonian. These are shown in Figure 2.
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Figure 2. The vertices contributing to the Hamiltonian in the XY sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
already performed the Wick contractions of the conjugate fields with the second gauge invariant
operator to write the vertices directly as spin chain interactions.
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Figure 3. The vertices contributing to the Hamiltonian in the XZ sector. A solid blue line denotes
the first and a dashed red line denotes the second gauge group. Time moves upwards. Here we have
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operator to write the vertices directly as spin chain interactions.

some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
spond to two states |Q12Q21�1Q12�2�2 · · · i and its Z2 conjugate |Q21Q12�2Q21�1�1 · · · i

depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X,Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of the
first site where the Hamiltonian acts. The major difference from the XY sector is that the
gauge group does not change on crossing a Z field. We write:

H1 =

0

BBB@

0 0 0 0

0  �1 0

0 �1 �1
0

0 0 0 0

1

CCCA
, H2 =
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1

CCCA

i=1,2

, (2.11)

where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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some combinations of fields (e.g. �1�2) cannot occur due to the gauge index structure.
The Hamiltonian (2.10) can of course also be reproduced from the more general scalar
Hamiltonian in [7].

We will again prefer to look at the Hamiltonian for the N = 4 X and Z fields rather
than their N = 2 component fields. So for instance a state like |XXZXZZ · · · i will corre-
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depending on the gauge group at a given reference site. To act with the Hamiltonian on
the X,Z basis, we again need to specify whether the gauge group is 1 or 2 to the left of the
first site where the Hamiltonian acts. The major difference from the XY sector is that the
gauge group does not change on crossing a Z field. We write:
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where the notation is that Hi acts on the basis in the gauge group representation ⇤i ⇥⇤j

where j is not correlated to i as above and can take both 1,2 values. More explicitly,
H1 is the Hamiltonian acting on two sites where the gauge group to the left of the first
site is the first one, while H2 acts when the gauge group to the left is the second one.
Unlike the XY sector, where each Hamiltonian was of Heisenberg type, in the XZ sector
the Hamiltonians are of Temperley-Lieb type. This immediately brings to mind the XXZ
model whose quantum-group invariant Hamiltonian (obtained by adding an appropriate
boundary term to the open chain) is of Temperley-Lieb type. However, unlike the XXZ
case, this Hamiltonian changes dynamically along the chain, since H1 is exchanged with
H2 (and vice versa) every time one crosses an X field. We will see in section 6 that Z

excitations around the vacuum formed by the X fields behave very similarly to those of
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where the notation is that H1 acts on the basis labelled by i = 1 in the representation
⇤1 ⇥ ⇤1 of the color group, while H2 acts on the basis with i = 2 in the representation
⇤2 ⇥ ⇤2. In other words, by H1 we denote the Hamiltonian which is applicable when
the gauge group to the left of a site ` along the chain is the first one, while H2 is the
corresponding Hamiltonian when the gauge group to the left of a site ` is the second one.
Both Hamiltonians are of XXX type but with a different (ferromagnetic) coupling given by
�1 and , respectively.

Given that the XY sector is only made up of bifundamentals, which means that the
gauge group alternates at consecutive sites (regardless of whether the field at that site is
an X or a Y ), we conclude that the Hamiltonian of this sector is alternately H1 and H2.
If, for instance, we fix the gauge group to the left of the first site to be the first one, we will
have H1 acting on odd-even sites and H2 acting on even-odd sites.

We conclude that the XY sector of the interpolating theory is governed by an alter-
nating XXX-model Hamiltonian. In section 5 we will study this alternating spin chain in
more detail using the coordinate Bethe ansatz.

For the sake of the interested reader, in order to obtain the Hamiltonian in (2.7) from
[7], we can start with the form of the Hamiltonian given at the top of page 16 of [7]. Firstly,
we note that K = KSU(2)R and is zero on our sector as we look only at the upper components
(IJ = ++) of the SU(2)R triplet QQ̃ or Q̃Q. Then the only contributions that are left in
our sector are

H1|QQ̃i = 2K̂|QQ̃i , H2|Q̃Qi = 22K̂|Q̃Qi (2.8)

where K̂ = KSU(2)L . Rescaling the Hamiltonian by an overall 2 and choosing the basis
(2.6) we get (2.7).

XZ sector
In this sector we will consider operators composed of the bifundamental field X and

the adjoint field Z. To find the Hamiltonian we will need the Q̃ij F-terms:

FQ̃12
= i(g2�2Q21 � g1Q21�1) , FQ̃21

= i(g1�1Q12 � g2Q12�2) (2.9)

These lead to the interactions shown in Figure 3.
We will again divide by an overall factor of g1g2, resulting in the Hamiltonian:
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. (2.10)

As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated as
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We introduce and study tetrahedron instantons, which can be realized in string theory

by D1-branes probing a configuration of intersecting D7-branes in flat spacetime with a

nonzero constant background B-field. Physically they capture instantons on C3 in the

presence of the most general intersecting codimention-two supersymmetric defects. More-

over, we construct the tetrahedron instantons as particular solutions of general instanton

equations in noncommutative field theory. We analyze the moduli space of tetrahedron

instantons and discuss the geometric interpretations. We compute the instanton partition

function both via the equivariant localization on the moduli space of tetrahedron instan-

tons and via the elliptic genus of the worldvolume theory on the D1-branes probing the

intersecting D7-branes, obtaining the same result. The instanton partition function of the

tetrahedron instantons lies between the higher-rank Donaldson-Thomas invariants on C3

and the partition function of the magnificent four model, which is conjectured to be the

mother of all instanton partition functions. Finally, we show that the instanton partition

function admits a free field representation.
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The one-loop Hamiltonian:



Old idea: elliptic R matrices from trigonometric ones by ‘averaging’.
[Jimbo, Konno, Opake, Shiraishi 1997]

Elliptic from dynamical

Our model is more intricate than Felder: when we cross a Z (field in the 
adjoint rep) we don’t want to shift the dynamical parameter.

At the level of the R matrix, the dynamical parameter of 
Felder keeps track of the color indices!

It is a dilute RSOS/CSOS model.

The holomorphic SU(3) sector is captured by a dynamical        
15-vertex model which is specified by the adjacency graph, 
which is the dual to the brane-tiling diagram of the quiver theory. 

 Originally discovered ellipticity via explicit coordinate Bethe ansatz (Q-vaccuum)

 New computation: 3-body coordinate Bethe ansatz (φ-vaccuum)
[Bozkurt, EP in preparation]

[Rabe, EP, Zoubos 2021]



Quasi-Hopf  
symmetry



The quantum plane is invariant under the transformations                    . 
They obey SU(2)q which is obtained using the Rtt relations:

The Manin quantum plane

infinite–dimensional symmetry is an affine quantum group. For example, for the quasi–triangular Hopf
algebra Uq(su(3)), introducing an extra parameter to the algebra it is possible to extend it to an affine
quantum group [49, 63]. We will only discuss Hopf algebras related toR–matrices without spectral–parameter
dependence. However, for the integrable cases we will make some connections to the known R–matrices with
spectral–parameter dependence. It will be interesting to uncover a connection between the Hopf algebra we
find for the general case and an affine version or an elliptic quantum group.

In the next section we will introduce Hopf algebras of the type we will later (in section four) see appearing
in the Leigh-Strassler deformations of N = 4 SYM.

3 Introducing Hopf algebras

The plan of this section is to introduce some basic ingredients about Hopf algebras which will be essential
for the analysis in the next section where we will show how a Hopf algebra structure appears in our physical
system. For more reading on these basics we refer to e.g. [64, 49, 63, 65].

3.1 Quantum linear algebra

One of the most concrete ways of thinking about quantum symmetries is perhaps in terms of quantum
linear algebra. Quantum linear algebra works in analogy with linear algebra. Thus the quantum vector
space consists of quantum vectors x = (xi) and quantum co-vectors u = (ui) , where the elements xi and ui

take their values in a noncommutative space V . Linear transformations are described by quantum matrices
t = {tij}, which can be thought of as ordinary matrices with the difference that the elements tij are now
operators instead of numbers.

In quantum vector algebra it is common to specify the commutation relations between vector elements,
and between co-vector elements, using a matrix R [66]. This is a |||C–valued matrix acting on the noncom-
mutative space V ⊗ V . Using the tensor components of the matrix R, the relation can be written as

λxbxa = Rab
jlx

jxl , (3.1)

λuaub = ujuiR
ji
ba , (3.2)

where λ is one of the eigenvalues of the matrix R̂ab
kl := Rba

kl, or without indices R̂ := PR. Here P is the
permutation matrix, P ij

kl = δjkδ
i
l . Then a quantum symmetry could be considered to be the transforma-

tion of the quantum vector and quantum co-vector which preserves the forms (3.1) and (3.2). Thus the
transformations under consideration are

x′j = tjlx
l , and u′

j = ul(t
−1)lj . (3.3)

Here we have made the assumption that t has an inverse (we will soon introduce a more precise notion, that
of an antipode), otherwise the co–plane should have been defined in a different way. As will be clear, this
choice is natural when one is interested in quantum generalisations of GL(n). It can be checked that the
transformations (3.3) will preserve the forms of (3.1) and (3.2) if the elements tij satisfy

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l , (3.4)

where, in performing the calculations, it is assumed that the elements tij commute with the vector and co-
vector elements. Equations (3.4) go under the name of FRT [66], or simply RTT, relations. They give rise
to what is known as a right/left A(R)-co-module algebra, where A(R) will be a bialgebra with generators
tij soon to be defined.

3.1.1 An example

But first, let us make all this more concrete with an example. The most famous one is Manin’s quantum
plane:

0 = qxy − yx , where x = x1 y = x2 (3.5)

7

and the corresponding co–plane

0 = vw − qwv , where v = u1 w = u2 . (3.6)

This quantum plane arises from (3.1) when using the Uq(sl(2)) R–matrix:

R = q−
1
2





q 0 0 0
0 1 q − q−1 0
0 0 1 0
0 0 0 q



 , (3.7)

where the eigenvalue λ = q1/2 has been chosen. We may ask whether there exists a linear transformation

x′i = tijx
j , (3.8)

which preserves this quantum plane. This is indeed the case, when the elements tij satisfy

t11t
1
2 = q−1t12t

1
1 , t11t

2
1 = q−1t21t

1
1 , t12t

2
2 = q−1t22t

1
2 , t21t

2
2 = q−1t22t

2
1 ,

t12t
2
1 = t21t

1
2 , t11t

2
2 − t22t

1
1 = (q−1 − q)t12t

2
1 ,

(3.9)

which we leave as an exercise for the interested reader. The above relations can be deduced from (3.4) using
the R–matrix (3.7). The matrix t = {tij} has many similarities with the matrix representation of a group. In

particular, assuming that the elements tij
′
commute with the elements tij , then tlm

′′
= tli

′
tim also represents

a generator of the above algebra.
If we now demand the form invariance of the expression

f(x, y) := xy − q−1yx , (3.10)

under the quantum symmetry, we need to impose an extra constraint on the generators tij . Defining the
quantum determinant as D := t11t

2
2 − q−1t21t

1
2, it can be shown that it is central, i.e. it commutes with

all the generators tij and we can therefore make a further quotient D = 1 of the algebra, in addition to the
quadratic relations. This defines out of the quantum deformation of GL(2) a quantum deformation of SL(2).
Doing this we obtain that f(x′, y′) = f(x, y). This will be most relevant when constructing the Hopf algebra
in the next section.

As will be clear from the definition below, the tij are the generators of a quantum matrix bialgebra.
The special case considered above is not just a bialgebra, but a very special Hopf algebra which is dual to
a quasi–triangular Hopf algebra, the universal enveloping algebra Uq(sl(2)). See appendix A for the basic
definitions of bialgebras and Hopf algebras.

3.2 Quantum matrix algebra

We now discuss how the general definitions of bialgebras and Hopf algebras in Appendix A apply to the
matrix algebra case. In the following Mn is the space of n× n matrices.

Quantum matrix bialgebra

Let R be an element of Mn⊗Mn. The bialgebra A(R) of quantum matrices is defined as being generated
by 1 and n2 indeterminates t = {tij} with

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l, ∆tij =

∑

a

tia ⊗ taj , εtij = δij (3.11)

where ∆ is the comultiplication operator and ε the counit (see Appendix A). Note that the multiplication in

the above example, tlm
′′
= tli

′
tim, where the elements tij

′
were assumed to commute with the elements tij , is

nothing but a realisation of the co-product ∆.
It will be useful to think of the algebra A(R) as a quotient algebra of a free algebra, A(R) = |||C[[tij ]]/I,

where I is the ideal generated by the quadratic relations coming from the RTT relations (the first relation
in (3.11)).
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3.2 Quantum matrix algebra

We now discuss how the general definitions of bialgebras and Hopf algebras in Appendix A apply to the
matrix algebra case. In the following Mn is the space of n× n matrices.

Quantum matrix bialgebra

Let R be an element of Mn⊗Mn. The bialgebra A(R) of quantum matrices is defined as being generated
by 1 and n2 indeterminates t = {tij} with

Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l, ∆tij =

∑

a

tia ⊗ taj , εtij = δij (3.11)

where ∆ is the comultiplication operator and ε the counit (see Appendix A). Note that the multiplication in

the above example, tlm
′′
= tli

′
tim, where the elements tij

′
were assumed to commute with the elements tij , is

nothing but a realisation of the co-product ∆.
It will be useful to think of the algebra A(R) as a quotient algebra of a free algebra, A(R) = |||C[[tij ]]/I,

where I is the ideal generated by the quadratic relations coming from the RTT relations (the first relation
in (3.11)).
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infinite–dimensional symmetry is an affine quantum group. For example, for the quasi–triangular Hopf
algebra Uq(su(3)), introducing an extra parameter to the algebra it is possible to extend it to an affine
quantum group [49, 63]. We will only discuss Hopf algebras related toR–matrices without spectral–parameter
dependence. However, for the integrable cases we will make some connections to the known R–matrices with
spectral–parameter dependence. It will be interesting to uncover a connection between the Hopf algebra we
find for the general case and an affine version or an elliptic quantum group.

In the next section we will introduce Hopf algebras of the type we will later (in section four) see appearing
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system. For more reading on these basics we refer to e.g. [64, 49, 63, 65].
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jxl , (3.1)

λuaub = ujuiR
ji
ba , (3.2)

where λ is one of the eigenvalues of the matrix R̂ab
kl := Rba

kl, or without indices R̂ := PR. Here P is the
permutation matrix, P ij

kl = δjkδ
i
l . Then a quantum symmetry could be considered to be the transforma-

tion of the quantum vector and quantum co-vector which preserves the forms (3.1) and (3.2). Thus the
transformations under consideration are
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j = ul(t
−1)lj . (3.3)

Here we have made the assumption that t has an inverse (we will soon introduce a more precise notion, that
of an antipode), otherwise the co–plane should have been defined in a different way. As will be clear, this
choice is natural when one is interested in quantum generalisations of GL(n). It can be checked that the
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Ri k
a bt

a
jt

b
l = tkbt

i
aR

a b
j l , (3.4)

where, in performing the calculations, it is assumed that the elements tij commute with the vector and co-
vector elements. Equations (3.4) go under the name of FRT [66], or simply RTT, relations. They give rise
to what is known as a right/left A(R)-co-module algebra, where A(R) will be a bialgebra with generators
tij soon to be defined.

3.1.1 An example

But first, let us make all this more concrete with an example. The most famous one is Manin’s quantum
plane:

0 = qxy − yx , where x = x1 y = x2 (3.5)
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[? ? ? ] and mathematics [? ? ]. In the Atiyah-Drinfield-Hitchin-Manin (ADHM) con-

struction [? ], the moduli space of Yang-Mills instantons on R4 is given as a hyper-Kahler
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using string theory [? ? ? ]. For example, the moduli space Mn,k of SU(n) instantons

of charge k is given by the Higgs branch of the supersymmetric gauge theory living on k

D1-branes probing a stack of n coincident D5-branes in type IIB superstring theory. To

avoid the noncompactness of Mn,k due to small instantons, Nakajima introduced a smooth
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theorem [? ], Zk can be evaluated exactly and is given by a sum over a collection of

random partitions. Assembling Zk with all k � 0 into a generating function, Nekrasov
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P

k�0 q
kZk of four-dimensional N = 2

SU(n) supersymmetric Yang-Mills theory in the ⌦-background [? ]. It turns out that both

the Seiberg-Witten e↵ective prepotential [? ? ] and the couplings to the background

gravitational fields [? ? ] can be derived rigorously from Z [? ? ? ? ? ? ]. The instanton

partition function is also related to the A-model topological strings on two-dimensional

Riemann surfaces [? ? ? ? ], the Virasoro/W-algebra conformal blocks [? ? ], and
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2
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which we leave as an exercise for the interested reader. The above relations can be deduced from (3.4) using
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This is for a special value of a() above, namely a() = 2/(1 + 2). The corresponding R-matrix
is

R =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 2
2+1 �

2�1
2+1 0 0 0 0 0

0 2�1
2+1

2
2+1 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 2
2+1

2�1
2+1 0

0 0 0 0 0 �
2�1
2+1

2
2+1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

(19)

This twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix, has determinant 1 and

is a factorising twist
R = F21F

�1
12 = (F12)

�2 . (20)

We will also be working with the braiding-type R-matrix,

Ř = P8R =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 2�1
2+1

2
2+1 0 0 0 0 0

0 2
2+1 �

2�1
2+1 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

0 0 0 0 0 �
2�1
2+1

2
2+1 0

0 0 0 0 0 2
2+1

2�1
2+1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

(21)

This matrix satisfies the Hecke-like relation for real parameter (see [6], eq.2.3)

Ř2 = I (22)

but not the Hecke version of the YBE (equivalent to the usual YBE for R)

Ř12Ř23Ř12 = Ř23Ř12Ř23. (23)

Anyway, now that we have a factorising twist we have an algorithm to construct the coassociator
according to (13), and the quasi-Hopf YBE will follow more or less automatically. Of course in
practice the construction might not be too straightforward but there shouldn’t be any obstruction
beyond technical aspects like exponentiating matrices. The main technical step, as outlined in [7],
is to express the twist an an exponential of the classical twist f , F = exp(�()f), which allows us
to make sense of expressions like (�⌦ id)F by rewriting them as exp(�()(�⌦ id)(f)) and making
use of the algebraic coproduct �(X) = X ⌦ 1 + 1 ⌦X. So as long as we can write f in terms of
products of algebra generators we can construct the coassociator.

Comments on similar R-matrices in the literature

Note that the 4 ⇥ 4 version of the twist F has appeared in [8] (equation 21) as well as [9]
(equation 2.17), where the 4 ⇥ 4 R-matrix also appears (equation 2.18) - to see this just use the
q-numbers

[n]q =
qn � q�n

q � q�1
(24)
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3D quantum planes classified

where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.
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the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.

10

where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
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The R-matrix is given by:

Using this R-matrix we get back the right quantum plane relations and 
through the Rtt relations we can write down the quantum algebra.  


The R-matrix  encodes symmetries of the quantum plane.

[Ewen,Ogievetsky1994]
Parameterise using two tensors Eijk and Fijk:

Quantum co-planeQuantum plane

This is for a special value of a() above, namely a() = 2/(1 + 2). The corresponding R-matrix
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R =

0
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0 2�1
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2
2+1 0 0 0 0 0
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2+1

2�1
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2
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(19)

This twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix, has determinant 1 and

is a factorising twist
R = F21F

�1
12 = (F12)

�2 . (20)

We will also be working with the braiding-type R-matrix,
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This matrix satisfies the Hecke-like relation for real parameter (see [6], eq.2.3)

Ř2 = I (22)

but not the Hecke version of the YBE (equivalent to the usual YBE for R)

Ř12Ř23Ř12 = Ř23Ř12Ř23. (23)

Anyway, now that we have a factorising twist we have an algorithm to construct the coassociator
according to (13), and the quasi-Hopf YBE will follow more or less automatically. Of course in
practice the construction might not be too straightforward but there shouldn’t be any obstruction
beyond technical aspects like exponentiating matrices. The main technical step, as outlined in [7],
is to express the twist an an exponential of the classical twist f , F = exp(�()f), which allows us
to make sense of expressions like (�⌦ id)F by rewriting them as exp(�()(�⌦ id)(f)) and making
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Comments on similar R-matrices in the literature
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q-numbers
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3D quantum planes classified

where ei is the Temperley–Lieb generator acting on spin sites i and i+ 1, which is related to the R–matrix
(3.7) as follows

ei = qI − q1/2R̂ . (3.19)

Thus the Hamiltonian (3.18) commutes with t⊗L and the Temperley–Lieb generator ei is in the same
equivalence class as R̂. In the same way the full holomorphic spin chain Hamiltonian (2.5) representing
the planar one–loop dilatation operator is related to R̂, which describes (as we will show) the Hopf algebra
describing the symmetry of the Leigh-Strassler deformation. When doing the Hopf algebra calculations in
appendices B and C, we will find it convenient to use R̂, because of the simple way it is expressed in terms
of the tensor Eijk that will be defined in the next paragraph.

3.3 The three-dimensional quantum plane

Let us now briefly review some aspects of work by Ewen and Ogievetsky [68], which has provided the
inspiration for much of our approach. That work is concerned with the classification of three–dimensional
quantum planes, defined as a polynomial algebra with three elements obeying quadratic relations such that
the Poincaré series of the algebra coincides with the classical one.6 Ewen and Ogievetsky find that for three–
dimensional planes this condition is equivalent to the matrix R generating the quantum plane satisfying the
YBE. They start out by defining the quadratic relations

Eα
ijx

ixj = 0, uiujF
ij
α = 0 . (3.20)

Demanding that the independent relations be the same as in the classical case they obtain three linearly
independent relations. They introduce two tensors Eijk and F ijk defining the quantum plane and the
quantum co–plane respectively:

Eijkx
ixjxk = 0 , and uiujukF

ijk = 0 . (3.21)

These tensors are related to the ones in (3.20) through:

Eijk = Eα
ijfαk, and Elij = elαE

α
ij , (3.22)

where the fαk and elα are related to the cyclicity properties of the Eijk tensor as follows

Eijk = Ql
kElij , with Qi

j = fαj(e
−1)αi . (3.23)

We will be interested in the case when Q is the identity matrix such that Eijk becomes periodic in the
indices. As will be clear, this is forced upon us by the physical system we have in mind, and in particular
the wish to preserve the Z3 symmetry of the superpotential mentioned above. For similar reasons we also
want the co–plane to have the same nonzero components as the plane. The condition provided in [68] for R̂
to generate the appropriate algebra is the following

R̂ij
kl = δikδ

j
l − EklmFmij , (3.24)

where Eijk and F ijk need to satisfy

δij =
1

2
EjmnF

mni , (3.25)

and
EajmFmibEebkF

kcj = δcaδ
i
e + δiaδ

c
e . (3.26)

Apart from [68], these equations were later studied in detail in [69] (see also [70] for some background)
in order to classify the SL(3) cases, and it was found they only have a solution in exceptional cases. We
should point out that we have rescaled the Eijk and F ijk tensors relative to [68]. In particular, their formula
equivalent to (3.24) would have a 2 in front of EklmFmij . This is just a choice of normalisation of the tensors
and has no real significance. On the other hand, once we have fixed this normalisation (e.g. by requiring
(3.25)) the relative factor between the first identity term and the second term in (3.24) is important for the

6This essentially means that the number of relations obeyed by the quantum algebra generators at every degree (quadratic,
cubic, etc.) is the same as in the classical algebra.
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The R-matrix is given by:

Using this R-matrix we get back the right quantum plane relations and 
through the Rtt relations we can write down the quantum algebra.  


The R-matrix encodes symmetries of the quantum plane.

[Ewen,Ogievetsky1994]
Parameterise using two tensors Eijk and Fijk:

Quantum co-planeQuantum plane



The Lagrangian is invariant under the transformations

which form a quantum version of SU(3) defined by the Rtt relations.

Leigh–Strassler theory  

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)
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Form invariance for f(x, y, z) and g(x, y, z) together is equivalent to invariance ofHij
kl . H

ij
kl is an hermitian

operator which gives the reality condition for the Hopf algebra that, as we will show, is generated by it. It
is necessary for the existence of a tij

∗
generator.

A Hopf algebra of this type is called real type if the following condition on the R–matrix is satisfied:

Ri j
k l = Rl k

j i (4.15)

which is equivalent to that R̂i k
j l = Rk i

j l is hermitian as a 9× 9 matrix. Here Hij
kl will play the role of R̂i k

j l,
and since H is hermitian (2.5) we are guaranteed to obtain an R–matrix of real type. When R is of real
type the definition

tij
∗
= S(tij) = sij (4.16)

is compatible with the relations Rt1t2 = t2t1R of the Hopf algebra A(R). So, as in our example in section
3.1.1, the co–plane coordinates transform according to the antipode.

Our first question is now whether we can have a non–trivial bialgebra generated by Hij
kl as explained in

the previous section, i.e. whether there exists a a non–trivial solution to

Hij
klt

k
mtln = tikt

j
lH

kl
mn . (4.17)

Note that the same algebra can equally well be generated by any R̂matrices belonging to the same equivalence
class as R̂ij

kl = Hij
kl, equation (3.17).

If this is the case, we would then like to show the existence of an antipode from which it will also follow
that the superpotential is invariant, since it will imply that the quantum determinant is central. At the
same time, having an antipode will imply (4.1) and thus guarantee invariance of the spin chain Hamiltonian
under the Hopf algebra. We will turn to the analysis of (4.17) after first exhibiting the R–matrix related to
our Hamiltonian.

4.1.1 The R–matrix for the general deformation

For concreteness, let us give here the form of the R–matrix that follows from the choice (4.6) via (3.24):

R =
1

2d2





























1+qq̄−hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0
0 2q̄ 0 1−qq̄+hh̄ 0 0 0 0 2hq̄
0 0 2q 0 −2h 0 qq̄+hh̄−1 0 0
0 qq̄+hh̄−1 0 2q 0 0 0 0 −2h
0 0 2h̄q 0 1+qq̄−hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1−qq̄+hh̄ 0
0 0 1−qq̄+hh̄ 0 2hq̄ 0 2q̄ 0 0

−2h 0 0 0 0 qq̄+hh̄−1 0 2q 0
0 −2h̄ 0 2h̄q 0 0 0 0 1+qq̄−hh̄





























(4.18)

The first observation about the above R–matrix is that is cyclic, Rab
cd = R(a+1)(b+1)

(c+1)(d+1) = R(a−1)(b−1)
(c−1)(d−1). This

feature, which can be traced back to the cyclic quantum plane relations (4.2) (which in turn was forced upon
us by the need to preserve the cyclic Z3 symmetry) distinguishes this R–matrix from those corresponding to
standard quantum deformations of SU(3), see e.g. [64, 68]. Those are related to the symmetries of ordered
Manin planes and are thus not cyclic.

It is also straightforward to check that this R–matrix leads to the expression (cf. (3.10))

f(xa, xa+1) = Ra a+1
k lx

kxl − xa+1xa =
(
xaxa+1 − qxa+1xa + hxa−1

a−1x
a−1
a−1

)
· q̄/d2 (4.19)

with consistent relations from f(xa+1, xa) and f(xa, xa) and similarly for the co–plane coordinates. Note
that R̂ has 1 as one of its eigenvalues, so we chose λ=1 in defining the quantum plane (cf. (3.1)). Setting
f(xa, xa+1) = 0 we thus reproduce the cyclic quantum plane structure in (4.2). However, according to
the general discussion in section 3, and as will be discussed more thoroughly in the following, the quantum
algebra produced by R leaves not just f(xa, xa+1)=0 invariant, but the form of the full “off shell” expression
f(xa, xa+1). It will thus lead to a symmetry of the Lagrangian itself and not only of the moduli space.

The final important property of (4.18) is that, for generic values of the deformation parameters, it does
not satisfy the Yang–Baxter equation. It is thus a slight abuse of language to call it an R–matrix (to

14

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.

(4.6)

12

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.
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where the normalisation is such that equation (3.25) in section 3 is satisfied. However, comparing with
the finiteness condition (2.2), we find that the coefficient in front of the superpotential is precisely what is
required by planar finiteness, in other words κ = 1/d. Recall that (3.25) was required to obtain an R–matrix
satisfying the YBE, but since we will be working in a more general setting we are in principle free to choose
the normalisation of the tensors Eijk and F ijk. It is however a peculiar coincidence that the most natural
way to choose the normalisation agrees with what is obtained for the planar finiteness condition. As we will
see, this normalisation also has its advantages when expressing the quantum determinant. Note that in our
discussion of the algebra below we will not assume that we are in the planar limit.

These choices for E and F were included in the analysis of [68], even though the condition to fulfil the
classical Poincaré series was too strong for generic values of q and h to be included in their definition of a
quantum plane. The case of arbitrary q and h = 0 was included for the quantum plane but with a different
co–plane, and similarly for the case of arbitrary h and q = 0. For the case h = 0, Eijk is proportional to the
q–epsilon tensor as defined in Majid [64].

Let us now recall that the component scalar field part of the F-term Lagrangian can be written as [47]:

LF,s = TrφiφjH
ij
lmφlφm (4.7)

where Hij
lm are the components of the hermitian matrix H , given explicitly in (2.5), describing the local

action of the one-loop dilatation operator on nearest neighbours,

H = Hjk
mnejm ⊗ ekn where Hjk

mn = EmnaF
ajk . (4.8)

Here we introduced the operators emn, which are defined through their action on the spin state |k〉, as
emn|k〉 = δnk|m〉.

We would like to show that there exists a quantum algebra transformation acting on Φi as

Φi → tijΦ
j (4.9)

under which the deformed superpotential is invariant. Invariance of the superpotential implies that

EijkΦ
iΦjΦk → Eijkt

i
lt
j
mtknΦ

lΦmΦn = ElmnΦ
lΦmΦn (4.10)

i.e. that the tij generators we are interested in finding satisfy

Eijkt
i
lt
j
mtkn = Elmn . (4.11)

A similar condition arises by requiring invariance of the hermitian conjugate of the superpotential:

Φi → Φjt
j
i

∗ ⇒ tli
∗
tmj

∗tnk
∗F ijk = F lmn . (4.12)

These relations impose strong restrictions on the generators tij of the algebra, which, as we will see, are
compatible with the cubic relations derived for our Hopf algebra in Appendix C. The condition (4.11) above
should be compared to the condition (3.27) for the three dimensional quantum plane in the previous section,
from which it follows that the quantum determinant occurring in (3.27) should be set to one.

Since the non–abelian nature of the scalar superfields is not relevant for the following discussion (the
generators of SU(N) being taken to commute with the tij) from now on we will return to the quantum plane
notation of section 3 and look at the form invariance of the expression

f(x, y, z) := Eijkx
ixjxk (4.13)

where we have associated each of the three holomorphic scalars to one of the quantum plane coordinates.
As discussed, setting the quantum determinant to one is just the step passing from a quantum deformation

of GL(3) to that of SL(3). However we also need to require form invariance of

g(x̄, ȳ, z̄) := x̄ix̄j x̄kF
ijk = f̄(x̄, ȳ, z̄) (4.14)

which assures the reality condition. We will see that this results in a deformation of SU(3) instead of SL(3).
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3D Quantum plane
The quantum co-plane: hermitian conjugate:
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ijk = f̄(x̄, ȳ, z̄) (4.14)

which assures the reality condition. We will see that this results in a deformation of SU(3) instead of SL(3).

13

[Roiban2004] [Berenstein,Cherkis2004] … [Månsson,Zoubos2008] … [Dlamini,Zoubos2016&19]

8 Conclusions and future directions 39

A Open strings in the presence of the background B-field 42

B Two-dimensional supersymmetric gauge theory 45

B.1 N = (2, 2) supersymmetry 45

B.2 N = (0, 2) supersymmetry 47

C Elliptic genus of N = (0, 2) theories 49

D Je↵rey-Kirwan residue formula 50

1 Introduction

WLS =
1

3
EijkTr{�i�j�k} (1.1)

S12S13S23 = S23S13S12 (1.2)

�O(x) = �i!aGaO(x) (1.3)
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d
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Î
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ÎI
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qxy = yx

Since the discovery of the Yang-Mills instantons as topologically nontrivial field con-

figurations that minimize the Yang-Mills action in four-dimensional Euclidean spacetime

[? ], many important developments on the applications of instantons arose in both physics

[? ? ? ] and mathematics [? ? ]. In the Atiyah-Drinfield-Hitchin-Manin (ADHM) con-

struction [? ], the moduli space of Yang-Mills instantons on R4 is given as a hyper-Kahler

quotient. In addition, the ADHM construction can be derived in a physically intuitive way

using string theory [? ? ? ]. For example, the moduli space Mn,k of SU(n) instantons

of charge k is given by the Higgs branch of the supersymmetric gauge theory living on k

D1-branes probing a stack of n coincident D5-branes in type IIB superstring theory. To

avoid the noncompactness of Mn,k due to small instantons, Nakajima introduced a smooth

manifold fMn,k, which can be obtained from the Uhlenbeck compactification of Mn,k by

resolving the singularities [? ]. Thereafter Nekrasov and Schwarz showed that fMn,k can

be interpreted as the moduli space of U(n) instantons on noncommutative R4 [? ], and can

be realized in string theory by turning on a nonzero constant background B-field [? ].
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AdS point of view 

Gravity dual reason why we have a quantum algebra:

NSNS B-field turned on the C3 (transverse to the D3).

When there is a B-field the open strings ending on 
the D3 branes see a non-commutative geometry.

Open strings see a quantum plane!

 Marginally deformed orbifolds also have a B-field on the orbifolded C2⊂C3  
(transverse to the D3) allowing us to go away from the orbifold point:

[Seiberg,Witten1999]

 For the Leigh–Strassler background [Kulaxizi 2006]
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We introduce and study tetrahedron instantons, which can be realized in string theory

by D1-branes probing a configuration of intersecting D7-branes in flat spacetime with a

nonzero constant background B-field. Physically they capture instantons on C3 in the

presence of the most general intersecting codimention-two supersymmetric defects. More-

over, we construct the tetrahedron instantons as particular solutions of general instanton

equations in noncommutative field theory. We analyze the moduli space of tetrahedron

instantons and discuss the geometric interpretations. We compute the instanton partition

function both via the equivariant localization on the moduli space of tetrahedron instan-

tons and via the elliptic genus of the worldvolume theory on the D1-branes probing the

intersecting D7-branes, obtaining the same result. The instanton partition function of the

tetrahedron instantons lies between the higher-rank Donaldson-Thomas invariants on C3

and the partition function of the magnificent four model, which is conjectured to be the

mother of all instanton partition functions. Finally, we show that the instanton partition

function admits a free field representation.
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The Z2 quiver quantum group  

where H =
∑L

i=1 Hi,i+1 and s the antipode discussed above. However, the viewpoint we would like to take
in this work is that this Hopf symmetry of the one–loop Hamiltonian is actually already present at the level
of the classical Lagrangian.

An early indication that there exists a quantum symmetry related to the general Leigh–Strassler theory
appeared in the work of [72]. Those authors noticed that the moduli space of vacua of the theory (obtained
by minimising the potential) has a (cyclic) quantum plane structure:

φ1φ2 = qφ2φ1 − h(φ3)2

φ2φ3 = qφ3φ2 − h(φ1)2

φ3φ1 = qφ1φ3 − h(φ2)2
(4.2)

where φi denotes the expectation value of the scalar part of Φi. Correspondingly we could write the conju-
gated relations, defining a cyclic co–plane. As discussed earlier, one possible definition of quantum groups is
as the symmetry groups of quantum planes. Thus, by considering the geometry of the moduli space we see
that there should be an appropriately defined quantum group acting on it. However, the work of [72] did
not specify precisely which quantum symmetry corresponds to the general (q, h) deformation.

Motivated by [72], in the following we will explore the symmetries of the quantum plane in (4.2). How-
ever, we will be even more general, and will ask which are the quantum transformations which leave the
superpotential itself invariant, rather than just its space of solutions.

4.1 Deforming the superpotential

We will start by exhibiting the full deformed superpotential, with both q and h nonzero, in a form which
will help to make the relation to Hopf algebras, in the way discussed in the previous section, obvious. This
will result in a two parameter deformation of the su(3) algebra.

Let us start from the N = 4 superpotential:

WN=4 = gTr
{
Φ1[Φ2,Φ3]

}
=

g

3
εijkTr

{
ΦiΦjΦk

}
. (4.3)

Here the superpotential is expressed via the SU(3)–invariant tensor εijk. We would now like to see the
Leigh–Strassler superpotential as arising from deforming the εijk tensor to Eijk, a tensor invariant under a
quantum deformation of SU(3). The goal is to prove its invariance under some generators t, which form a
Hopf algebra, as explained in section 3. We will also of course need invariance of the hermitian conjugate of
the superpotential, which will define for us the co–tensor F ijk. Let us use the trace structure to write the
Leigh-Strassler superpotential (2.1) as

WLS =
κ

3
Tr

{
Φ1Φ2Φ3+Φ2Φ3Φ1+Φ3Φ1Φ2−q(Φ1Φ3Φ2+Φ2Φ1Φ3+Φ3Φ2Φ1)+h[(Φ1)3+(Φ2)3+(Φ3)3]

}
. (4.4)

Our main interest is the form invariance of the superpotential which is related to the three–dimensional
quantum plane, in an analogous way to the example in the previous section exhibiting the relation between
Manin’s quantum plane and the form invariance in (3.10). To investigate form invariance, we express the
superpotential and its hermitian conjugate in terms of the tensors Eijk and F ijk as

WLS +W†
LS =

1

3
Tr

(
EijkΦ

iΦjΦk + ΦiΦjΦkF
ijk

)
. (4.5)

Comparing with (4.4), and using the notation of [68], we find:

F ijk = Eijk (the bar denotes complex conjugation),

E123 = E231 = E312 =
1

d
,

E321 = E213 = E132 = − q

d
,

E111 = E222 = E333 =
h

d
, where d2 =

1 + q̄q + h̄h

2
.
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12

3.1 R-matrix and Drinfeld twist in the quantum plane limit

A practical way to search for a quantum-group deformation of the symmetries of our theory
is through considering the corresponding quantum plane limit. In the gauge theory the
quantum plane arises through the F -term relations [44, 45, 66]. As discussed in [44] this
is an SU(3)-type quantum plane, of the type studied in [67], and we will follow a similar
approach below. For N = 4 SYM, setting the FZ term to zero one simply obtains the
relation XY = Y X, i.e. the classical, commutative plane, while for the �-deformation this
is modified to XY = qY X and can be attributed to the transverse coordinates xi seen by
open strings ending on the D3-branes becoming noncommutative.11 The quadratic relations
on the coordinates of the quantum plane can be derived via an appropriate R-matrix as

Ri j
k lX

kX l
= XjXi (3.4)

In [45] the R-matrix leading to the full quantum plane geometry of the Leigh-Strassler
theories was studied and shown to arise from a Drinfeld twist which does not satisfy the
cocycle equation. Therefore the quasi-Hopf setting is the appropriate one to understand
the symmetries of the Leigh-Strassler marginal deformation of the N = 4 theory.

It is thus natural to ask whether one can find a similar quantum-group structure for
the N = 2 theories we are considering in the present work. To answer this, let us start by
writing the superpotential (2.4) in a way that will make it easier to read off the quantum
plane structure. As in [45], to see this structure one first needs to write out the cyclically
related terms in the gauge theory traces (i.e. open up the gauge indices temporarily). Then
we will collect the terms which have the first gauge group to the left:

g1
⇣
�1Q12

eQ21 +Q12
eQ21�1 � �1

eQ12Q21 �
eQ12Q21�1

⌘
+ g2

⇣
eQ12�2Q21 �Q12�2

eQ21

⌘
.

(3.5)
Working in an SU(3) basis X1

= X,X2
= Y,X3

= Z, this allows us to define the deforma-
tion of the SU(3)-invariant symbol ✏ijk as

E(1)
123 = g1 , E

(1)
231 = g2 , E

(1)
312 = g1 , E

(1)
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Using these symbols, we can write the superpotential as

W = E(1)
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⇣
XiXjXk
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+ E(2)

ijkTr2
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XiXjXk
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(3.8)

In this expression, the gauge index on the left is denoted by the subscript n = 1, 212 and
this uniquely fixes the indices of the remaining terms (i.e. whether X1 is Q12 or Q21). We

11This is a statement about the transverse coordinates themselves and is independent of the fact that
they also become N ⇥N matrices when one has multiple branes.

12The index n = 1, 2 can also be understood as counting the images of quantum plane due to the orbifold.

– 12 –

3.1 R-matrix and Drinfeld twist in the quantum plane limit

A practical way to search for a quantum-group deformation of the symmetries of our theory
is through considering the corresponding quantum plane limit. In the gauge theory the
quantum plane arises through the F -term relations [44, 45, 66]. As discussed in [44] this
is an SU(3)-type quantum plane, of the type studied in [67], and we will follow a similar
approach below. For N = 4 SYM, setting the FZ term to zero one simply obtains the
relation XY = Y X, i.e. the classical, commutative plane, while for the �-deformation this
is modified to XY = qY X and can be attributed to the transverse coordinates xi seen by
open strings ending on the D3-branes becoming noncommutative.11 The quadratic relations
on the coordinates of the quantum plane can be derived via an appropriate R-matrix as

Ri j
k lX

kX l
= XjXi (3.4)

In [45] the R-matrix leading to the full quantum plane geometry of the Leigh-Strassler
theories was studied and shown to arise from a Drinfeld twist which does not satisfy the
cocycle equation. Therefore the quasi-Hopf setting is the appropriate one to understand
the symmetries of the Leigh-Strassler marginal deformation of the N = 4 theory.

It is thus natural to ask whether one can find a similar quantum-group structure for
the N = 2 theories we are considering in the present work. To answer this, let us start by
writing the superpotential (2.4) in a way that will make it easier to read off the quantum
plane structure. As in [45], to see this structure one first needs to write out the cyclically
related terms in the gauge theory traces (i.e. open up the gauge indices temporarily). Then
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see that as far as the quantum plane is concerned the superpotential has split into two
terms, which is of course related to the block structure of our Hamiltonians in each sector.
To complete the picture, one needs to also define the conjugates F ijk which are related to
the conjugate superpotential W = XiXjXkF ijk. Since all couplings are taken to be real,
we simply take F ijk

(n) = E(n)
ijk .

From these tensors we can now reconstruct the Hamiltonian of each sector (2.7) and
(2.11) using the relation

(Hn)
ij
kl = E(n)

klrF
ijr
(n) . (3.9)

The reason that the Hamiltonian can be directly read off from the superpotential is that at
one loop there is a non-renormalisation theorem at work and only the F-terms contribute.
For instance, for the XY sector (free indices 1, 2), we obtain

(H1)
12
12 = E(1)

123F
123
(1) = g21 , (H1)

21
12 = E(1)

123F
213
(1) = �g21 ,

(H1)
12
21 = E(1)

213F
123
(1) = �g21 , (H1)

21
21 = E(1)

213F
213
(1) = g21 ,

(3.10)

while for the XZ sector (free indices 1, 3):

(H1)
13
13 = E(1)

132F
132
(1) = g22 , (H1)

31
13 = E(1)

132F
312
(1) = �g1g2 ,

(H1)
13
31 = E(1)

312F
132
(1) = �g1g2 , (H1)

31
31 = E(1)

312F
312
(1) = g21 ,

(3.11)

and similarly for the Y Z sector. These reproduce the upper blocks of our Hamiltonians
(2.6) and (2.10), respectively. Clearly the lower blocks H2 arise in the same way using (3.9)
for the second gauge index.

Let us now consider the quantum plane structure of the theory which arises from the
F -term relations. For the XY sector these are

g1Q12
eQ21 = g1 eQ12Q21 , g2Q21

eQ12 = g2 eQ21Q12 , (3.12)

while for the XZ sector we have

�2Q21 =
1


Q21�1 , �1Q12 = Q12�2 , (3.13)

and similarly for the Y Z sector:

�2
eQ21 =

1


eQ21�1 , �1

eQ12 =  eQ12�2 . (3.14)

We see that the SU(2) symmetry13 is undeformed in the XY sector (as the factors of g1g2
can be factored out), so the R-matrix in this sector is equivalent to the identity matrix I (its
classical value) in the quantum plane limit. However in the other two XY and Y Z sectors
the SU(2) symmetry of the N = 4 theory (and of the orbifold point) becomes deformed as
 moves away from its classical value of 1.

13Note that this undeformed and unbroken SU(2) symmetry acting on the XY sector is precisely the
extra SU(2)L global symmetry of the Z2 quiver we described in Section 2.1.
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There are two copies (images) 
of the quantum plane:

(k images for a rank k orbifold)

XZ:
XY:

YZ:



choice c = 2
1+2 . Explicitly, the R-matrix R = PR̂ reads

R =

0

BBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0
2

2+1 �
2�1
2+1 0 0 0 0 0

0
2�1
2+1

2
2+1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0
2

2+1
2�1
2+1 0

0 0 0 0 0 �
2�1
2+1

2
2+1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 k k0 0 0 0 0 0

0 �k0 k 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 k �k0 0

0 0 0 0 0 k0 k 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

(3.18)

written in the same basis as (2.10), which we identify with the two-site basis xixj in (3.4).
This R-matrix does not satisfy the usual YBE, apart from the special cases  = ±1, 0. The
R-matrix (3.18) can be seen to reduce to I � I in the  ! 1 limit, as expected.

It is very intriguing to observe that (3.18) is the direct sum of two Felder SU(2) dy-
namical R-matrices, as presented in (4.8), for the special parameter values � = (1 + ⌧)/2,
⌘ = ±⌧/4 and with the rapidity fixed to u =

1
2 . The choices ⌘ = ±⌧/4 are for the upper and

lower block respectively. For these values, the coefficients of the R-matrix (4.8), normalised
by dividing out by �, reduce to the elliptic modulus k and its complement k0 =

p
1� k

related to the modular parameter m̃ = 42/(1+2)2 which, as we will see in Section 7, can
be read off from the 1-magnon dispersion relation. Note that the value u =

1
2 makes sense

as the location of the quantum plane limit on the rapidity torus, being equal to one of the
half-periods of the elliptic functions describing it. For the careful reader we note that for
rational models, the quantum plane arises at u ! 1, however that is because the torus has
been decompactified by sending the periods to infinity.

Being triangular, the R-matrix can also be factorised as

R = F21F
�1
12 = (F12)

�2 . (3.19)

with the twist being given by

F =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 ↵ � 0 0 0 0 0

0 �� ↵ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ↵ �� 0

0 0 0 0 0 � ↵ 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

with:
↵ =

+1p
2
p
1+2 ,

� =
�1p

2
p
1+2

(3.20)

We note that the twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix

and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).
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rational models, the quantum plane arises at u ! 1, however that is because the torus has
been decompactified by sending the periods to infinity.

Being triangular, the R-matrix can also be factorised as

R = F21F
�1
12 = (F12)

�2 . (3.19)

with the twist being given by

F =

0

BBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 ↵ � 0 0 0 0 0

0 �� ↵ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 ↵ �� 0

0 0 0 0 0 � ↵ 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCA

with:
↵ =

+1p
2
p
1+2 ,

� =
�1p

2
p
1+2

(3.20)

We note that the twist is triangular, i.e. F21 = F�1
12 , is orthogonal as an 8 ⇥ 8 matrix

and has unit determinant. From this twist, taking appropriate care when working with our
truncated tensor product on the three-site basis, one can obtain a coassociator with which
the R-matrix (3.18) satisfies the quasi-Hopf YBE (3.3).
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The Rtt relations define the 
quantum group

Let us now consider the symmetries of the XZ quantum plane, which in the undeformed
theory are just an SU(2) rotating X with Z. This SU(2) is broken after the orbifold and the
marginal deformation. However, from the above discussion we see that it will get uplifted
to an SU(2) quantum group defined by the RTT relations [50] with the R-matrix (3.18):

Ri j
k l T

k
m T l

n = T j
l T

i
k R

k l
m n . (3.21)

Of course, given an arbitrary matrix R, the RTT relations by themselves are not sufficient
to define a consistent quantum group. In particular, the consistency of the higher order
relations in the generators requires the YBE relation for R. Otherwise, requiring asso-
ciativity can trivialise the relations. However, since our R-matrix is triangular and can be
factorised via a Drinfeld twist, one can abandon associativity in a consistent way by working
in a quasi-Hopf setting, as was done in [45]. In such a setting, the action of the deformed
generators on the quantum plane can be related to that of the undeformed ones using the
twist, and the quantum algebra can be consistently defined (at the price of introducing a
coassociator as in (3.2) which complicates the formalism somewhat.)

We thus see that, even though the orbifold and the marginal deformation superficially
break part of the PSU(2, 2|4) global symmetry group of N = 4 SYM, the broken generators
are not really broken when one is willing to work in a quasi-Hopf setting. They are rather
-deformed and should still be able to provide useful constraints on the theory. We will
leave a more detailed study of the quantum group underlying the XZ sector, as well as its
generalisation to SU(3) and the full scalar sector, for future work.

The main complication in our setting, compared to the N = 1 theories studied in [45],
is the non-direct product nature of our state space, i.e. the fact that some combinations of
the fields are not allowed due to the incompatibility of the gauge indices. One would thus
need to work in a truncated state space which makes the construction less immediate. Work
towards elucidating this structure is in progress. For the present work, we desire to avoid
this issue and that is one of our motivations for introducing what we call the dynamical
notation in the next section.

Concluding this section we wish to emphasise the following points. Firstly our results
in this section hold purely in the quantum plane limit. We only obtained the R-matrix
R(u⇤;) in a special limit for the spectral parameter u ! u⇤. 15 To completely describe
our model and attempt to solve it with the Algebraic Bethe ansatz approach we need to first
obtain the R-matrix as a function of the spectral parameter R(u;). In the conclusions we
will comment on how one could go about doing that. To fully understand the quasi-Hopf
structure, it is also imperative to compute the coassociator, which will enable us to write
down and check the quasi-Hopf YBE (3.3). Secondly, in order for a quantum system with

15In rational or trigonometric integrable systems, where the R-matrix is known as a function of the
spectral parameter, one can obtain the quantum plane limit by taking the spectral parameter to infinity. In
elliptic models the dependence on the spectral parameter is such that the quantum plane limit corresponds
to taking the spectral parameter to be equal one of the half-periods of the elliptic functions. Since the
trigonometric and rational cases are reached by taking one or both (respectively) periods of the elliptic
functions to infinity (thus decompactifying the rapidity torus in one or both directions) this leads to the
statement above.
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A quasi-Hopf symmetry algebra!

The Z2 quiver quantum group  
XY sector the R∝1: the SU(2) that rotates X and Y is unbroken (indeed true)

XZ nontrivial R: the SU(2) that rotates X and Z is naively broken (not lost but 
upgraded to quantum)

For the XZ sector the R-matrix is 
generated by a Drinfeld-twist:

8 x 8 because of the two copies!

Two copies SU(2)κ  and SU(2)1/κ!



Understanding the 
twist/coproduct



The Z2 quiver has extra symmetry  

 The action of the generators of the SU(3)κ (and the full SU(4)κ) on fields is 

inherited from N=4 SYM (orbifold point). But now groupoid!

 The superpotential is invariant under the quantum “SU(3)κ” symmetry.

Change of basis to a simpler twist, where the coproduct takes the form

8 Conclusions and future directions 39

A Open strings in the presence of the background B-field 42

B Two-dimensional supersymmetric gauge theory 45

B.1 N = (2, 2) supersymmetry 45

B.2 N = (0, 2) supersymmetry 47

C Elliptic genus of N = (0, 2) theories 49

D Je↵rey-Kirwan residue formula 50

1 Introduction

�R
I

Î
= K

IÎ
⌦R

I

Î
+R

I

Î
⌦K

ÎI
(1.1)

qxy = yx

Since the discovery of the Yang-Mills instantons as topologically nontrivial field con-

figurations that minimize the Yang-Mills action in four-dimensional Euclidean spacetime

[? ], many important developments on the applications of instantons arose in both physics

[? ? ? ] and mathematics [? ? ]. In the Atiyah-Drinfield-Hitchin-Manin (ADHM) con-

struction [? ], the moduli space of Yang-Mills instantons on R4 is given as a hyper-Kahler

quotient. In addition, the ADHM construction can be derived in a physically intuitive way

using string theory [? ? ? ]. For example, the moduli space Mn,k of SU(n) instantons

of charge k is given by the Higgs branch of the supersymmetric gauge theory living on k

D1-branes probing a stack of n coincident D5-branes in type IIB superstring theory. To

avoid the noncompactness of Mn,k due to small instantons, Nakajima introduced a smooth

manifold fMn,k, which can be obtained from the Uhlenbeck compactification of Mn,k by

resolving the singularities [? ]. Thereafter Nekrasov and Schwarz showed that fMn,k can

be interpreted as the moduli space of U(n) instantons on noncommutative R4 [? ], and can

be realized in string theory by turning on a nonzero constant background B-field [? ].

The moduli space fMn,k admits a U(1)2 action which stems from the rotation symmetry

of the spacetime R4, and a U(n) action which rotates the gauge orientation at infinity.

Although fMn,k is noncompact, because the instantons can run away to infinity of the

spacetime R4, the T-equivariant symplectic volume Zk of fMn,k is still well-defined [?

], with T being the maximal torus of U(1)2 ⇥ U(n). Using the equivariant localization

theorem [? ], Zk can be evaluated exactly and is given by a sum over a collection of

random partitions. Assembling Zk with all k � 0 into a generating function, Nekrasov

obtained the instanton partition function Z =
P

k�0 q
kZk of four-dimensional N = 2

SU(n) supersymmetric Yang-Mills theory in the ⌦-background [? ]. It turns out that both

the Seiberg-Witten e↵ective prepotential [? ? ] and the couplings to the background

gravitational fields [? ? ] can be derived rigorously from Z [? ? ? ? ? ? ]. The instanton
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The spectrum organises in multiplets of the quantum “SU(4)κ”.

[Ihry 2008] 
[Garus 2017]

The SU(3)κ has in it the XZ “SU(2)κ” (as well as the YZ “SU(2)κ”).

and is easily generalised to any number of sites.

[2302.xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]



The Z2 quiver has extra symmetry  
Example of an SU(2)κ multiplet

and it has the following action

F̂ .XX 7! XX , (75)

F̂ . (XZ + ZX) 7!
1
p

XZ +

p
ZX , (76)

F̂ . (XZ � ZX) 7!
1
p

XZ �

1

3/2
ZX , (77)

F̂ . ZZ 7! ZZ . (78)

The “-inverse” twist F̂21 (where  7!
1
) reproduces the -inverse actions on the states.

The n-th application of the normalized coproduct, which reproduces the above actions,
is defined as follows (for general length L)

⇥
��

±⇤n :=
1

n!

h

± 1

L
�
1⌦ · · ·⌦ �

± + 1⌦ · · ·⌦ �
±
⌦ 

s(i) + · · ·+ �
±
⌦ 

s(i)
⌦ · · ·⌦ 

s(i)
�in

.

(79)

Therefore, schematically an even-numbered L-site multiplet looks as follows:

tr(Q12Q21 . . . Q21)


� 1

LQ12 . . . Q12�2 + 
L�1
L Q12 . . . Q21�1Q12 + · · ·+ 

L�1
L �1Q12 . . . Q12

. . .


1
L�L

2 Q12�2 . . .�2 + · · ·+ 
1
L+L

2 �1
�1 . . .�1Q12

tr(�1 . . .�1)

��
�

��
�

��
�

��
�

��
+

��
+

��
+

��
+

The R-matrix for the upper block becomes

R̂12 = F̂21 · F̂
�1
12 =

0

BB@

1 0 0 0
0  0 0
0 1� 

2
 0

0 0 0 1

1

CCA , (80)

9

The kappa symmetrised  
operators (eigenvectors) we can 
also obtain by direct diagonalisation 
of the one-loop Hamiltonian.

This SU(2) was 
known to be broken!

[2302.xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]

From the point of view 
of N=2 representation 
theory, these operators 
are unrelated!



The Z2 quiver has extra symmetry  

The  stress energy tensor 
multiplet of N=4 breaks 
into N=2 multiplets. 
Nonetheless, the naively 
broken generators get 
upgraded to quantum 
generators. With the new 
coproduct allow us to 
have one multiplet!

The D multiplets drop after you trace.

M
0
3

M
0
3

M
0
3

,
T

M
�
3

M
�
3

M
�
3

M
+
3

M
+
3

M
+
3

Ē2

E2

ˆ̄
D 1

2

ˆ̄
D 1

2
D̄ 1

2
D̄ 1

2

D̂ 1
2

D̂ 1
2

D 1
2

D 1
2

SU(2)R

11/20�1/2�1

U(1)r

�2

�1

0

1

2

SU(2)L

�1

1

0
1/2

�1/2

Figure 2: Depiction of the 20’ multiplet, with the action of the broken R-
symmetry generators
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[2302.xxxxx Andriolo,Bertle,EP,Zhang,Zoubos]



Conjecture 

 The N<4 theories which can be obtained via orbifolding, 
orientifolding, … the mother N=4 SYM theory, enjoy a 
quantum deformation of the “SU(4)” R-symmetry of the 
mother theory and possibly a quantum PSU(2,2|4).

 The naively broken generators of SU(4) → U( N  ) get 
upgraded to quantum generators.

… any susy breaking that is due to R-symmetry breaking.



3D q-planes and N < 4 SCFTs

 N < 4 theories: F-terms: define (complex 3D) quantum planes.


 Can read off the R-matrix at the quantum plane (Braid) limit.


 The Rtt relations: give us the quantum group.


 From R-matrix: Drinfeld twist and the quasi-Hopf symmetry algebra.


 Translate to a “dynamical twist”. Then it is easy to write the coproduct 
for any number of sites, it is possible to check the invariance of the 
Lagrangian and look for the quantum “SU(4)” multiplets.

N=4 SYM

D3

N<4 gauge theories

D3
R6

CY3 cone



Where we currently are
 Studying a large class of N=2 SCFTs. (A-type orbifolds)


 More multiplets, also non-BPS, 6x6=1+15+20’, 6x6x6= 50+10+…


 The SU(3) scalar sector as a dynamical 15-vertex model.


 Elliptic nature via an explicit 2-body coordinate Bethe ansatz    
(Q-vacuum).


Explicit 3-body coordinate Bethe ansatz (φ-vacuum).                
The Yang operator (seems to obey a type of YBE)

We will therefore take for our ansatz a superposition of a single Y excitation on odd and
even sites

|pi =
X

`22Z
 e(`)|`i+

X

`22Z+1

 o(`)|`i. (5.3)

This leads to the following equations:

�1
�
 e(2r)�  o(2r � 1)

�
+ 

�
 e(2r)�  o(2r + 1)

�
= E1(p) e(2r), (5.4)

and


�
 o(2s+ 1)�  e(2s)

�
+ �1

�
 o(2s+ 1)�  e(2s+ 2)

�
= E1(p) o(2s+ 1) , (5.5)

which can be solved easily by the Bethe-type ansatz

 e(`) = Ae(p)e
ip`,  o(`) = Ao(p)e

ip` , (5.6)

where the ratio between the even and odd amplitudes is fixed to be

r(p;) =
Ao(p)

Ae(p)
= ⌥

eip
p
1 + 2e�2ip

p
1 + 2e2ip

. (5.7)

The eigenvalue of the eigenvector (5.3) is

E1(p) = E1(p;) =
1


+ ±

1



q
(1 + 2)2 � 42 sin2 p . (5.8)

Similarly to [62, 63], we will call the negative branch of the square root the acoustic branch
and the positive one the optical branch. The acoustic branch is the one which includes the
zero-energy state E1(0) = 0. As can be seen in Figure 10, as  is tuned away from 1, a gap
of magnitude 2(1/ � ) develops between the branches at the boundary of the Brillouin
zone, which is at p = ⇡/2. Therefore, scattering states are confined either to the lower
(“acoustic”) or upper (“optical”) branch.

Note that by a choice of branch cut we can also bring the energy eigenvalue to the form

E1(p;) = +
1


±

1



p
1 + 2e�2ip

p
1 + 2e2ip . (5.9)

In this section we will choose to use the dispersion relation in this form. Some motivation for
this will be discussed in Section 7. Without loss of generality we will work with the acoustic
branch, however when considering specific solutions (such as in section 5.3) magnons be-
longing to both branches need to be considered (as well as solutions with complex momenta
which can lead to energies between the branches.)

We observe that the energy is even under reflection of the momentum, while the ratio
function is inverted:

E1(�p;) = E1(p;) , r(�p;) =
1

r(p;)
(5.10)

Similarly, the energy is invariant under the Z2 transformation  ! 1/, while the ratio is
again inverted:

E1(p; 1/) = E1(p;) , r(p; 1/) =
1

r(p;)
. (5.11)
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[in preparation with Deniz Bozkurt]



Where are we going?
 How to go from 2- to 3-sites: Derive the co-cycle condition.


 This will formally answer the Integrability question.


 Boost operator program for DYBE! (First the alternating XY!)


 All-loops S-matrix and hopefully integrability.


 Detailed study of more  N=2 SCFTs and N=1 SCFTs.


 The SU(3) scalar sector as a dynamical 15/19-vertex model.

[with de Leeuw, Retore, Zoubos]



Outlook

 Study the gravity dual of marginally deformed orbifolds!


 “4D Chern-Simons” approach


 Generalize                                                                                                              

To the quantum string Dual to Free N=2 SCFTs.

[2104.08263 Gaberdiel, Gopakumar] [2206.08795 Gaberdiel, Galvagno]

[1709.09993 Costello, Witten, Yamazaki]



Thanks!
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