A Quantum Mechanics for Magnetic Horizons

Ziruo Zhang (SISSA)

Joint work with Francesco Benini and Saman Soltani. arXiv:2212.00672 [hep-th]

March 2, 2020

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that requires quantum gravity:

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that requires quantum gravity:

- For many near-extremal black holes, semi-classically, we have

$$
M-M_{\mathrm{ext}} \sim \frac{T^{2}}{M_{\mathrm{b}}}
$$

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that requires quantum gravity:

- For many near-extremal black holes, semi-classically, we have

$$
M-M_{\mathrm{ext}} \sim \frac{T^{2}}{M_{\mathrm{b}}}
$$

- For $T<M_{\mathrm{b}}$, mass is insufficient to radiate even a single Hawking quantum \Longrightarrow semi-classical analysis must break down, quantum effects are important [Preskill et al. 1991].

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that requires quantum gravity:

- For many near-extremal black holes, semi-classically, we have

$$
M-M_{\mathrm{ext}} \sim \frac{T^{2}}{M_{\mathrm{b}}}
$$

- For $T<M_{\mathrm{b}}$, mass is insufficient to radiate even a single Hawking quantum \Longrightarrow semi-classical analysis must break down, quantum effects are important [Preskill et al. 1991].
- Corrected spectrum might have a gap at M_{b} [Maldacena and Susskind 1996], or different T scaling [Iliesiu and Turiaci 2020].

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations are tractable:

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations are tractable:

- Extremal BPS black holes have been studied quite thoroughly [Strominger and Vafa 1996, enormous literature...]

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations are tractable:

- Extremal BPS black holes have been studied quite thoroughly [Strominger and Vafa 1996, enormous literature...]
- Like the extremal case, near-horizon geometry of near-extremal black holes typically $\mathrm{AdS}_{2} \times S^{d-2}$, eg. $\mathrm{AdS}_{2} \times S_{r_{0}}^{2}$ for 4 d Reissner-Nordström (RN) black hole.

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations are tractable:

- Extremal BPS black holes have been studied quite thoroughly [Strominger and Vafa 1996, enormous literature...]
- Like the extremal case, near-horizon geometry of near-extremal black holes typically $\mathrm{AdS}_{2} \times S^{d-2}$, eg. $\mathrm{AdS}_{2} \times S_{r_{0}}^{2}$ for 4 d Reissner-Nordström (RN) black hole.
- Since $M_{\text {gap }} \ll 1 / r_{0}$, near-extremal spectrum can be studied by dimensionally reducing on $S_{r_{0}}^{2}$, obtaining a 2 d dilaton-gravity coupled to gauge fields.

Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations are tractable:

- Extremal BPS black holes have been studied quite thoroughly [Strominger and Vafa 1996, enormous literature...]
- Like the extremal case, near-horizon geometry of near-extremal black holes typically $\mathrm{AdS}_{2} \times S^{d-2}$, eg. $\mathrm{AdS}_{2} \times S_{r_{0}}^{2}$ for 4 d Reissner-Nordström (RN) black hole.
- Since $M_{\text {gap }} \ll 1 / r_{0}$, near-extremal spectrum can be studied by dimensionally reducing on $S_{r_{0}}^{2}$, obtaining a 2 d dilaton-gravity coupled to gauge fields.
- Near extremality, reduces to a Schwarzian theory with coefficient depending on the charge/chemical potential [Iliesiu and Turiaci 2020]. Same computation for near-BPS black holes in [Heydeman et al. 2020], etc...

Holographic description

What could be the dual QM? From a bottom-up approach:

Holographic description

What could be the dual QM? From a bottom-up approach:

- We know that the SYK model is also described by the Schwarzian in the IR [Sachdev, Ye, Kitaev, Maldacena, Stanford, etc...]

Holographic description

What could be the dual QM? From a bottom-up approach:

- We know that the SYK model is also described by the Schwarzian in the IR [Sachdev, Ye, Kitaev, Maldacena, Stanford, etc...]
- However, we need a generalization with global symmetries. Eg. 1 U(1) complex SYK [Sachdev 2015].

Holographic description

What could be the dual QM? From a bottom-up approach:

- We know that the SYK model is also described by the Schwarzian in the IR [Sachdev, Ye, Kitaev, Maldacena, Stanford, etc...]
- However, we need a generalization with global symmetries. Eg. 1 U(1) complex SYK [Sachdev 2015].
- Also need SUSY to describe near-BPS black holes [Fu, Gaiotto, Maldacena and Sachdev 2016] (only $\left.\mathrm{U}(1)_{R}\right) . \mathrm{U}(1)_{F} \times \mathrm{U}(1)_{R}$ and SUSY [Heydeman, Turiaci, Zhao 2022].

Holographic description

What could be the dual QM? From a bottom-up approach:

- We know that the SYK model is also described by the Schwarzian in the IR [Sachdev, Ye, Kitaev, Maldacena, Stanford, etc...]
- However, we need a generalization with global symmetries. Eg. 1 U(1) complex SYK [Sachdev 2015].
- Also need SUSY to describe near-BPS black holes [Fu, Gaiotto, Maldacena and Sachdev 2016] (only $\left.\mathrm{U}(1)_{R}\right) . \mathrm{U}(1)_{F} \times \mathrm{U}(1)_{R}$ and SUSY [Heydeman, Turiaci, Zhao 2022].
- Can we be more systematic? Embed in higher-dimensional AdS/CFT

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\mathrm{AdS}_{4} \times S^{6}$.

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\mathrm{AdS}_{4} \times S^{6}$.

- Solutions interpolate between AdS_{4} asymptotics and $\mathrm{AdS}_{4} \times S^{2}$ near-horizon

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\mathrm{AdS}_{4} \times S^{6}$.

- Solutions interpolate between AdS_{4} asymptotics and $\mathrm{AdS}_{4} \times S^{2}$ near-horizon
- Holographic RG flow between dual field theory compactified on S^{2} and the QM we seek.

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\mathrm{AdS}_{4} \times S^{6}$.

- Solutions interpolate between AdS_{4} asymptotics and $\mathrm{AdS}_{4} \times S^{2}$ near-horizon
- Holographic RG flow between dual field theory compactified on S^{2} and the QM we seek.
- Dual is a $3 \mathrm{~d} \mathcal{N}=2 \mathrm{U}(N)_{k}$ theory with 3 adjoint chirals $\Phi_{a=1,2,3}$ and $W=\operatorname{Tr} \Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]$.

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\operatorname{AdS}_{4} \times S^{6}$.

- Solutions interpolate between AdS_{4} asymptotics and $\mathrm{AdS}_{4} \times S^{2}$ near-horizon
- Holographic RG flow between dual field theory compactified on S^{2} and the QM we seek.
- Dual is a $3 \mathrm{~d} \mathcal{N}=2 \mathrm{U}(N)_{k}$ theory with 3 adjoint chirals $\Phi_{a=1,2,3}$ and $W=\operatorname{Tr} \Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]$.
- Asymptotics of black hole \Longrightarrow dual theory is put on $S^{2} \times \mathbb{R}$ with a topological twist on S^{2}.

Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on $\mathrm{AdS}_{4} \times S^{6}$.

- Solutions interpolate between AdS_{4} asymptotics and $\mathrm{AdS}_{4} \times S^{2}$ near-horizon
- Holographic RG flow between dual field theory compactified on S^{2} and the QM we seek.
- Dual is a $3 \mathrm{~d} \mathcal{N}=2 \mathrm{U}(N)_{k}$ theory with 3 adjoint chirals $\Phi_{a=1,2,3}$ and $W=\operatorname{Tr} \Phi_{1}\left[\Phi_{2}, \Phi_{3}\right]$.
- Asymptotics of black hole \Longrightarrow dual theory is put on $S^{2} \times \mathbb{R}$ with a topological twist on S^{2}.
- Plan: reduce dual theory on S^{2} with topological twist and find the QM.

Which flux sector?

The field theory on $S^{2} \times \mathbb{R}$ has flux sectors where dynamical gauge fields have vevs $A=\frac{\mathfrak{m}_{i}}{2}(1-\cos \theta) d \varphi H^{i}$.

Which flux sector?

The field theory on $S^{2} \times \mathbb{R}$ has flux sectors where dynamical gauge fields have vevs $A=\frac{\mathfrak{m}_{i}}{2}(1-\cos \theta) d \varphi H^{i}$.

- KK spectrum depends heavily on \mathfrak{m}_{i}. A priori, not clear which \mathfrak{m}_{i} to use.

Which flux sector?

The field theory on $S^{2} \times \mathbb{R}$ has flux sectors where dynamical gauge fields have vevs $A=\frac{\mathfrak{m}_{i}}{2}(1-\cos \theta) d \varphi H^{i}$.

- KK spectrum depends heavily on \mathfrak{m}_{i}. A priori, not clear which \mathfrak{m}_{i} to use.
- Background of the reduction coincides with that of the topologically twisted index [Benini and Zaffaroni 2015]

$$
\mathcal{I}(y)=\sum_{\{\mathfrak{m}\}} \oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \mathcal{Z}_{\mathfrak{m}}(y, u), \quad \mathcal{Z}_{\mathfrak{m}}(y, u)=e^{\mathfrak{m} \cdot V^{\prime}(u)+\Omega(u)}
$$

Each $\mathcal{Z}_{\mathfrak{m}}=$ Witten index of a gauged QM [Hori, Kim and Yi 2014]

Which flux sector?

The field theory on $S^{2} \times \mathbb{R}$ has flux sectors where dynamical gauge fields have vevs $A=\frac{\mathfrak{m}_{i}}{2}(1-\cos \theta) d \varphi H^{i}$.

- KK spectrum depends heavily on \mathfrak{m}_{i}. A priori, not clear which \mathfrak{m}_{i} to use.
- Background of the reduction coincides with that of the topologically twisted index [Benini and Zaffaroni 2015]

$$
\mathcal{I}(y)=\sum_{\{\mathfrak{m}\}} \oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \mathcal{Z}_{\mathfrak{m}}(y, u), \quad \mathcal{Z}_{\mathfrak{m}}(y, u)=e^{\mathfrak{m} \cdot V^{\prime}(u)+\Omega(u)}
$$

Each $\mathcal{Z}_{\mathfrak{m}}=$ Witten index of a gauged QM [Hori, Kim and Yi 2014]

- \mathcal{I} at large N reproduces the entropy of BPS black holes [Benini, Khachatryan and Milan 2017].

Which flux sector?

The field theory on $S^{2} \times \mathbb{R}$ has flux sectors where dynamical gauge fields have vevs $A=\frac{\mathfrak{m}_{i}}{2}(1-\cos \theta) d \varphi H^{i}$.

- KK spectrum depends heavily on \mathfrak{m}_{i}. A priori, not clear which \mathfrak{m}_{i} to use.
- Background of the reduction coincides with that of the topologically twisted index [Benini and Zaffaroni 2015]

$$
\mathcal{I}(y)=\sum_{\{\mathfrak{m}\}} \oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \mathcal{Z}_{\mathfrak{m}}(y, u), \quad \mathcal{Z}_{\mathfrak{m}}(y, u)=e^{\mathfrak{m} \cdot V^{\prime}(u)+\Omega(u)}
$$

Each $\mathcal{Z}_{\mathfrak{m}}=$ Witten index of a gauged QM [Hori, Kim and Yi 2014]

- \mathcal{I} at large N reproduces the entropy of BPS black holes [Benini, Khachatryan and Milan 2017].
- Strategy: compute \mathcal{I} at large N via saddle point in \mathfrak{m}; isolate the $\hat{\mathfrak{m}}$ that dominates \mathcal{I} and reproduces BPS black hole entropy.

Saddle point analysis

3 ways of computing \mathcal{I} at large N, with the same result:

Saddle point analysis

3 ways of computing \mathcal{I} at large N, with the same result:

- (I) Sum over \mathfrak{m} and solve for poles in continuous variables $i \rightarrow t$, $u^{i} \rightarrow u(t)$. Matches BPS entropy [Benini, Khachatryan, Milan 2018].

$$
\mathcal{I}=\oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \frac{e^{\Omega(u)}}{1-e^{V^{\prime}(u)}}=\sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} \frac{e^{\Omega(\hat{u})}}{i^{N} V^{\prime \prime}(\hat{u})} \approx \sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} e^{\Omega(\hat{u})}
$$

Saddle point analysis

3 ways of computing \mathcal{I} at large N, with the same result:

- (I) Sum over \mathfrak{m} and solve for poles in continuous variables $i \rightarrow t$, $u^{i} \rightarrow u(t)$. Matches BPS entropy [Benini, Khachatryan, Milan 2018].

$$
\mathcal{I}=\oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \frac{e^{\Omega(u)}}{1-e^{V^{\prime}(u)}}=\sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} \frac{e^{\Omega(\hat{u})}}{i^{N} V^{\prime \prime}(\hat{u})} \approx \sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} e^{\Omega(\hat{u})}
$$

- (II) $\mathfrak{m}_{i} \rightarrow \mathfrak{m}(t)$, Saddle point in \mathfrak{m} and $u . \mathfrak{m}: V^{\prime}(\hat{u})=0, u$: $\hat{\mathfrak{m}} \cdot V^{\prime \prime}(\hat{u})+\Omega^{\prime}(\hat{u})=0$ fixes $\hat{\mathfrak{m}}$ in terms of \hat{u} and vice versa. Result same as above.

Saddle point analysis

3 ways of computing \mathcal{I} at large N, with the same result:

- (I) Sum over \mathfrak{m} and solve for poles in continuous variables $i \rightarrow t$, $u^{i} \rightarrow u(t)$. Matches BPS entropy [Benini, Khachatryan, Milan 2018].

$$
\mathcal{I}=\oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} \frac{e^{\Omega(u)}}{1-e^{V^{\prime}(u)}}=\sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} \frac{e^{\Omega(\hat{u})}}{i^{N} V^{\prime \prime}(\hat{u})} \approx \sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} e^{\Omega(\hat{u})}
$$

- (II) $\mathfrak{m}_{i} \rightarrow \mathfrak{m}(t)$, Saddle point in \mathfrak{m} and $u . \mathfrak{m}: V^{\prime}(\hat{u})=0, u$: $\hat{\mathfrak{m}} \cdot V^{\prime \prime}(\hat{u})+\Omega^{\prime}(\hat{u})=0$ fixes $\hat{\mathfrak{m}}$ in terms of \hat{u} and vice versa. Result same as above.
- (III) Isolate term for $\hat{\mathfrak{m}}$ in (II) and perform saddle point in u

$$
\mathcal{Z}_{\hat{\mathfrak{m}}}=\oint \prod_{i=1}^{N} \frac{d u^{i}}{2 \pi} e^{\hat{\mathfrak{m}} \cdot V^{\prime}(u)+\Omega(u)}=\sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} \frac{e^{\Omega(\hat{u})}}{\sqrt{J}} \approx \sum_{\hat{u} \mid V^{\prime}(\hat{u})=0} e^{\Omega(\hat{u})}
$$

Saddle point analysis

- By using $\hat{\mathfrak{m}}$ in (II) in the reduction, saw from (III) that the Witten index $\mathcal{Z}_{\hat{\mathfrak{m}}}$ of the QM reproduces entropy of BPS black holes.

Saddle point analysis

- By using $\hat{\mathfrak{m}}$ in (II) in the reduction, saw from (III) that the Witten index $\mathcal{Z}_{\hat{\mathfrak{m}}}$ of the QM reproduces entropy of BPS black holes.
- Global symmetry $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R}$. Magnetic charges $\mathfrak{n}_{a=1,2,3}$, chemical potentials $\Delta_{a=1,2,3}, \sum_{a} \mathfrak{n}_{a}=-2, \sum_{a} \Delta_{a} \in 2 \pi \mathbb{Z}$. Saddle point flux:

$$
\begin{aligned}
\hat{\mathfrak{m}}(t) & =\left(\frac{N}{9 k G^{2}}\right)^{\frac{1}{3}} f_{+} t, \quad \rho(t) \equiv \frac{1}{N} \frac{d i}{d t}=\frac{3}{4}\left(1-t^{2}\right), \quad t \in[-1,1], \\
G & =\sum_{a=1}^{3} g_{+}\left(\Delta_{a}\right), \quad f_{+} \equiv-\sum_{a=1}^{3}\left(1+\mathfrak{n}_{a}\right)\left(g_{+}^{\prime}\left(\Delta_{a}\right)-g_{+}^{\prime}(0)\right), \\
& g_{+}(\Delta) \equiv \frac{1}{6} \Delta^{3}-\frac{\pi}{2} \Delta^{2}+\frac{\pi^{2}}{3} \Delta .
\end{aligned}
$$

Saddle point analysis

- By using $\hat{\mathfrak{m}}$ in (II) in the reduction, saw from (III) that the Witten index $\mathcal{Z}_{\hat{\mathfrak{m}}}$ of the QM reproduces entropy of BPS black holes.
- Global symmetry $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R}$. Magnetic charges $\mathfrak{n}_{a=1,2,3}$, chemical potentials $\Delta_{a=1,2,3}, \sum_{a} \mathfrak{n}_{a}=-2, \sum_{a} \Delta_{a} \in 2 \pi \mathbb{Z}$. Saddle point flux:

$$
\begin{aligned}
\hat{\mathfrak{m}}(t) & =\left(\frac{N}{9 k G^{2}}\right)^{\frac{1}{3}} f_{+} t, \quad \rho(t) \equiv \frac{1}{N} \frac{d i}{d t}=\frac{3}{4}\left(1-t^{2}\right), \quad t \in[-1,1] \\
G & =\sum_{a=1}^{3} g_{+}\left(\Delta_{a}\right), \quad f_{+} \equiv-\sum_{a=1}^{3}\left(1+\mathfrak{n}_{a}\right)\left(g_{+}^{\prime}\left(\Delta_{a}\right)-g_{+}^{\prime}(0)\right) \\
& g_{+}(\Delta) \equiv \frac{1}{6} \Delta^{3}-\frac{\pi}{2} \Delta^{2}+\frac{\pi^{2}}{3} \Delta .
\end{aligned}
$$

- This result is also found in [Hosseini and Zaffaroni 2022].

Background of the reduction

- Topological twist (global magnetic fluxes) breaks $3 \mathrm{~d} \mathcal{N}=2 \rightarrow 1$ complex supercharge Q, generating $1 \mathrm{~d} \mathcal{N}=2$. Also generically breaks $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R} \rightarrow \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$

Background of the reduction

- Topological twist (global magnetic fluxes) breaks $3 \mathrm{~d} \mathcal{N}=2 \rightarrow 1$ complex supercharge Q, generating $1 \mathrm{~d} \mathcal{N}=2$. Also generically breaks $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R} \rightarrow \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$
- For gauge fluxes $\hat{\mathfrak{m}}$ to preserve Q, also turn on the backgrounds

$$
\sigma=-\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad A_{t}=\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad m_{k} \equiv \frac{k e_{3 \mathrm{~d}}^{2}}{2 \pi}
$$

$\hat{\mathfrak{m}}$ breaks gauge group $\mathrm{U}(N) \rightarrow \mathrm{U}(1)^{N}$. Expect $\mathcal{N}=2, \mathrm{U}(1)^{N}$ gauged QM with $\mathrm{SU}(2) \times \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$ global symmetry.

Background of the reduction

- Topological twist (global magnetic fluxes) breaks $3 \mathrm{~d} \mathcal{N}=2 \rightarrow 1$ complex supercharge Q, generating $1 \mathrm{~d} \mathcal{N}=2$. Also generically breaks $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R} \rightarrow \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$
- For gauge fluxes $\hat{\mathfrak{m}}$ to preserve Q, also turn on the backgrounds

$$
\sigma=-\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad A_{t}=\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad m_{k} \equiv \frac{k e_{3 \mathrm{~d}}^{2}}{2 \pi}
$$

$\hat{\mathfrak{m}}$ breaks gauge group $\mathrm{U}(N) \rightarrow \mathrm{U}(1)^{N}$. Expect $\mathcal{N}=2, \mathrm{U}(1)^{N}$ gauged QM with $\mathrm{SU}(2) \times \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$ global symmetry.

- Add SYM action as regulator, taking $e_{3 \mathrm{~d}}^{2} \rightarrow \infty$ before $R \rightarrow 0$. Full Lagrangian:

$$
\mathcal{L}=k \mathcal{L}_{\mathrm{CS}}+\frac{1}{e_{3 \mathrm{~d}}^{2}} \mathcal{L}_{\mathrm{SYM}}+\mathcal{L}_{\Phi, \text { kin }}+\mathcal{L}_{\text {superpot }}
$$

Background of the reduction

- Topological twist (global magnetic fluxes) breaks $3 \mathrm{~d} \mathcal{N}=2 \rightarrow 1$ complex supercharge Q, generating $1 \mathrm{~d} \mathcal{N}=2$. Also generically breaks $\mathrm{SU}(3)_{F} \times \mathrm{U}(1)_{R} \rightarrow \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$
- For gauge fluxes $\hat{\mathfrak{m}}$ to preserve Q, also turn on the backgrounds

$$
\sigma=-\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad A_{t}=\frac{\hat{\mathfrak{m}}}{2 m_{k} R^{2}}, \quad m_{k} \equiv \frac{k e_{3 \mathrm{~d}}^{2}}{2 \pi}
$$

$\hat{\mathfrak{m}}$ breaks gauge group $\mathrm{U}(N) \rightarrow \mathrm{U}(1)^{N}$. Expect $\mathcal{N}=2, \mathrm{U}(1)^{N}$ gauged QM with $\mathrm{SU}(2) \times \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$ global symmetry.

- Add SYM action as regulator, taking $e_{3 \mathrm{~d}}^{2} \rightarrow \infty$ before $R \rightarrow 0$. Full Lagrangian:

$$
\mathcal{L}=k \mathcal{L}_{\mathrm{CS}}+\frac{1}{e_{3 \mathrm{~d}}^{2}} \mathcal{L}_{\mathrm{SYM}}+\mathcal{L}_{\Phi, \text { kin }}+\mathcal{L}_{\text {superpot }}
$$

- Unusual fact: background is not a saddle point of $\mathcal{L}_{\mathrm{CS}}$.

Failure of standard gauge-fixing procedure

Computing the KK spectrum of the vector multiplet requires gauge fixing.

Why the Faddeev-Popov (FP) procedure usually works for SUSY theories:

Failure of standard gauge-fixing procedure

Computing the KK spectrum of the vector multiplet requires gauge fixing.

Why the Faddeev-Popov (FP) procedure usually works for SUSY theories:

- Standard FP procedure involves introducing c, \widetilde{c}, b and adding $s \Psi_{\mathrm{gf}}$.

Failure of standard gauge-fixing procedure

Computing the KK spectrum of the vector multiplet requires gauge fixing.

Why the Faddeev-Popov (FP) procedure usually works for SUSY theories:

- Standard FP procedure involves introducing c, \widetilde{c}, b and adding $s \Psi_{\mathrm{gf}}$.
- Breaks SUSY since $Q s \Psi_{\mathrm{gf}}=-s Q \Psi_{\mathrm{gf}} \neq 0$ but violating term is s-exact.

Failure of standard gauge-fixing procedure

Computing the KK spectrum of the vector multiplet requires gauge fixing.

Why the Faddeev-Popov (FP) procedure usually works for SUSY theories:

- Standard FP procedure involves introducing c, \widetilde{c}, b and adding $s \Psi_{\mathrm{gf}}$.
- Breaks SUSY since $Q s \Psi_{\mathrm{gf}}=-s Q \Psi_{\mathrm{gf}} \neq 0$ but violating term is s-exact.
- Does not affect s-closed observables, eg. Ward identities can be derived.

Failure of standard gauge-fixing procedure

In this case, expansion around background:

$$
\mathcal{L}=\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots, \quad \mathcal{L}^{(1)}=\operatorname{Tr}\left(\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}+\sigma\right)\right)
$$

Failure of standard gauge-fixing procedure

In this case, expansion around background:

$$
\mathcal{L}=\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots, \quad \mathcal{L}^{(1)}=\operatorname{Tr}\left(\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}+\sigma\right)\right)
$$

- Spectrum is computed from $\mathcal{L}^{(2)}$. Presence of $\mathcal{L}^{(1)}$ and $s \mathcal{L}^{(1)}=\frac{1}{4 \pi R^{2}} \operatorname{Tr}\left(i k \mathfrak{m}\left[c, A_{t}+\sigma\right]\right)$ implies that $\mathcal{L}^{(2)}$ is not invariant under linearized BRST.

Failure of standard gauge-fixing procedure

In this case, expansion around background:

$$
\mathcal{L}=\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots, \quad \mathcal{L}^{(1)}=\operatorname{Tr}\left(\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}+\sigma\right)\right)
$$

- Spectrum is computed from $\mathcal{L}^{(2)}$. Presence of $\mathcal{L}^{(1)}$ and $s \mathcal{L}^{(1)}=\frac{1}{4 \pi R^{2}} \operatorname{Tr}\left(i k \mathfrak{m}\left[c, A_{t}+\sigma\right]\right)$ implies that $\mathcal{L}^{(2)}$ is not invariant under linearized BRST.
- Previous argument fails since $\mathcal{L}^{(2)}$ is not s-closed. No guarantee that spectrum is SUSY.

Failure of standard gauge-fixing procedure

In this case, expansion around background:

$$
\mathcal{L}=\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots, \quad \mathcal{L}^{(1)}=\operatorname{Tr}\left(\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}+\sigma\right)\right)
$$

- Spectrum is computed from $\mathcal{L}^{(2)}$. Presence of $\mathcal{L}^{(1)}$ and $s \mathcal{L}^{(1)}=\frac{1}{4 \pi R^{2}} \operatorname{Tr}\left(i k \mathfrak{m}\left[c, A_{t}+\sigma\right]\right)$ implies that $\mathcal{L}^{(2)}$ is not invariant under linearized BRST.
- Previous argument fails since $\mathcal{L}^{(2)}$ is not s-closed. No guarantee that spectrum is SUSY.
- Problem is absent in usual cases where the background is a saddle point of \mathcal{L}.

Failure of standard gauge-fixing procedure

In this case, expansion around background:

$$
\mathcal{L}=\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots, \quad \mathcal{L}^{(1)}=\operatorname{Tr}\left(\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}+\sigma\right)\right)
$$

- Spectrum is computed from $\mathcal{L}^{(2)}$. Presence of $\mathcal{L}^{(1)}$ and $s \mathcal{L}^{(1)}=\frac{1}{4 \pi R^{2}} \operatorname{Tr}\left(i k \mathfrak{m}\left[c, A_{t}+\sigma\right]\right)$ implies that $\mathcal{L}^{(2)}$ is not invariant under linearized BRST.
- Previous argument fails since $\mathcal{L}^{(2)}$ is not s-closed. No guarantee that spectrum is SUSY.
- Problem is absent in usual cases where the background is a saddle point of \mathcal{L}.
- One might try the temporal gauge $A_{t}+\sigma=0$. SUSY is manifest but there are ∞ towers of light modes.

Improved gauge fixing

Fix taken from [Pestun 2007]

Improved gauge fixing

Fix taken from [Pestun 2007]

- Further include $\mathcal{Q} \Psi_{\mathrm{gf}}$ in addition to $s \Psi_{\text {gf }}$, i.e. $\delta \Psi_{\mathrm{gf}}$ in total, $\delta \equiv s+\mathcal{Q} . \mathcal{Q} \equiv Q+\bar{Q}$ on physical fields, acts non-trivially on b, c.

Improved gauge fixing

Fix taken from [Pestun 2007]

- Further include $\mathcal{Q} \Psi_{\mathrm{gf}}$ in addition to $s \Psi_{\mathrm{gf}}$, i.e. $\delta \Psi_{\mathrm{gf}}$ in total, $\delta \equiv s+\mathcal{Q} . \mathcal{Q} \equiv Q+\bar{Q}$ on physical fields, acts non-trivially on b, c.
- Why is this allowed? Using the fact that $\mathcal{Q} \Psi_{\text {gf }}$ has $n_{g}=-1,-2$, easy to show that $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$, observables are not affected.

Improved gauge fixing

Fix taken from [Pestun 2007]

- Further include $\mathcal{Q} \Psi_{\mathrm{gf}}$ in addition to $s \Psi_{\mathrm{gf}}$, i.e. $\delta \Psi_{\mathrm{gf}}$ in total, $\delta \equiv s+\mathcal{Q} . \mathcal{Q} \equiv Q+\bar{Q}$ on physical fields, acts non-trivially on b, c.
- Why is this allowed? Using the fact that $\mathcal{Q} \Psi_{\text {gf }}$ has $n_{g}=-1,-2$, easy to show that $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$, observables are not affected.
How does this help?

Improved gauge fixing

Fix taken from [Pestun 2007]

- Further include $\mathcal{Q} \Psi_{\mathrm{gf}}$ in addition to $s \Psi_{\mathrm{gf}}$, i.e. $\delta \Psi_{\mathrm{gf}}$ in total, $\delta \equiv s+\mathcal{Q} . \mathcal{Q} \equiv Q+\bar{Q}$ on physical fields, acts non-trivially on b, c.
- Why is this allowed? Using the fact that $\mathcal{Q} \Psi_{\text {gf }}$ has $n_{g}=-1,-2$, easy to show that $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$, observables are not affected.
How does this help?
- New gauge-fixed action is δ-closed since $\delta \mathcal{L}=0$ and $\delta^{2}=$ time-translation + residual gauge transformations.

Improved gauge fixing

Fix taken from [Pestun 2007]

- Further include $\mathcal{Q} \Psi_{\mathrm{gf}}$ in addition to $s \Psi_{\mathrm{gf}}$, i.e. $\delta \Psi_{\mathrm{gf}}$ in total, $\delta \equiv s+\mathcal{Q} . \mathcal{Q} \equiv Q+\bar{Q}$ on physical fields, acts non-trivially on b, c.
- Why is this allowed? Using the fact that $\mathcal{Q} \Psi_{\text {gf }}$ has $n_{g}=-1,-2$, easy to show that $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$, observables are not affected.
How does this help?
- New gauge-fixed action is δ-closed since $\delta \mathcal{L}=0$ and $\delta^{2}=$ time-translation + residual gauge transformations.
- Can redefine $A_{t}^{\prime}+\sigma^{\prime}=A_{t}+\sigma+\frac{1}{2}\{c, c\}$ (still hermitian) so that $\delta\left(A_{t}^{\prime}+\sigma^{\prime}\right)=0$. Now

$$
\delta \mathcal{L}^{\prime(1)}=\delta \operatorname{Tr}\left[\frac{k \mathfrak{m}}{4 \pi R^{2}}\left(A_{t}^{\prime}+\sigma^{\prime}\right)\right]=0
$$

and $\mathcal{L}^{\prime(2)}$ is invariant under linearized $\delta \Longrightarrow$ spectrum is supersymmetric.

Field content of QM

Can now proceed:

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:
- $A_{t}^{i}+\sigma^{i}, 1 \mathrm{~d} U(1)^{N}$ vector multiplet

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:
- $A_{t}^{i}+\sigma^{i}, 1 \mathrm{~d} U(1)^{N}$ vector multiplet
- For $q_{i j} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}}{2} \leq-1$, bifund. chiral multiplet $\Xi_{|m| \leq-q_{i j}-1}^{i j}$

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:
- $A_{t}^{i}+\sigma^{i}, 1 \mathrm{~d} U(1)^{N}$ vector multiplet
- For $q_{i j} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}}{2} \leq-1$, bifund. chiral multiplet $\Xi_{|m| \leq-q_{i j}-1}^{i j}$
- For $q_{i j} \geq \frac{1}{2}$, bifund. Fermi multiplet $C_{|m| \leq q_{i j}}^{i j}$ (from anti-ghosts) Massless modes from each 3d chiral multiplet Φ_{a} :

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:
- $A_{t}^{i}+\sigma^{i}, 1 \mathrm{~d} U(1)^{N}$ vector multiplet
- For $q_{i j} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}}{2} \leq-1$, bifund. chiral multiplet $\Xi_{|m| \leq-q_{i j}-1}^{i j}$
- For $q_{i j} \geq \frac{1}{2}$, bifund. Fermi multiplet $C_{|m| \leq q_{i j}}^{i j}$ (from anti-ghosts) Massless modes from each 3d chiral multiplet Φ_{a} :
- For $q_{i j}^{a} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}+\mathfrak{n}_{a}}{2} \geq 0$, bifund. chiral multiplet $\Phi_{a,|m| \leq q_{i j}^{a}}^{i j}$

Field content of QM

Can now proceed:

- choose gauge fixing function that fixes $3 \mathrm{~d} \mathrm{U}(N) \rightarrow$ time-dependent $\mathrm{U}(1)^{N}$.
- Expand in monopole harmonics [Wu and Yang 1976] In the limit $e_{3 \mathrm{~d}} \rightarrow \infty, R \rightarrow 0, e_{3 \mathrm{~d}}^{2} R \gg 1$, massless modes from vector multiplet:
- $A_{t}^{i}+\sigma^{i}, 1 \mathrm{~d} U(1)^{N}$ vector multiplet
- For $q_{i j} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}}{2} \leq-1$, bifund. chiral multiplet $\Xi_{|m| \leq-q_{i j}-1}^{i j}$
- For $q_{i j} \geq \frac{1}{2}$, bifund. Fermi multiplet $C_{|m| \leq q_{i j}}^{i j}$ (from anti-ghosts) Massless modes from each 3d chiral multiplet Φ_{a} :
- For $q_{i j}^{a} \equiv \frac{\hat{\mathfrak{m}}_{i}-\hat{\mathfrak{m}}_{j}+\mathfrak{n}_{a}}{2} \geq 0$, bifund. chiral multiplet $\Phi_{a,|m| \leq q_{i j}^{a}}^{i j}$
- For $q_{i j}^{a} \leq-1$, bifund. Fermi multiplet $\mathcal{Y}_{a,|m| \leq-q_{i j}^{a}-1}^{i j}$

Action of QM

For brevity, use superspace:

Action of QM

For brevity, use superspace:

- 1 complex supercharge \Longrightarrow superspace has 1 complex fermionic coord. θ, derivatives D, \bar{D}

Action of QM

For brevity, use superspace:

- 1 complex supercharge \Longrightarrow superspace has 1 complex fermionic coord. θ, derivatives D, \bar{D}
- For chirals, $\bar{D} \Phi=0$. For Fermis, $\bar{D} \mathcal{Y}=E(\Phi), R(E)=R(\mathcal{Y})+1$. Both contain 1 complex boson and 1 complex fermion.
Pieces of the action:

Action of QM

For brevity, use superspace:

- 1 complex supercharge \Longrightarrow superspace has 1 complex fermionic coord. θ, derivatives D, \bar{D}
- For chirals, $\bar{D} \Phi=0$. For Fermis, $\bar{D} \mathcal{Y}=E(\Phi), R(E)=R(\mathcal{Y})+1$. Both contain 1 complex boson and 1 complex fermion.
Pieces of the action:
- Wilson line of charges $k \hat{\mathfrak{m}}_{i}$, modifies Gauss' law

$$
k \hat{\mathfrak{m}}_{i}\left(A_{t}^{i}+\sigma^{i}\right)=\int d \theta d \bar{\theta} \hat{\mathfrak{m}}_{i} V^{i}
$$

Action of QM

For brevity, use superspace:

- 1 complex supercharge \Longrightarrow superspace has 1 complex fermionic coord. θ, derivatives D, \bar{D}
- For chirals, $\bar{D} \Phi=0$. For Fermis, $\bar{D} \mathcal{Y}=E(\Phi), R(E)=R(\mathcal{Y})+1$. Both contain 1 complex boson and 1 complex fermion.
Pieces of the action:
- Wilson line of charges $k \hat{\mathfrak{m}}_{i}$, modifies Gauss' law

$$
k \hat{\mathfrak{m}}_{i}\left(A_{t}^{i}+\sigma^{i}\right)=\int d \theta d \bar{\theta} \hat{\mathfrak{m}}_{i} V^{i}
$$

- Each chiral has a linear kinetic term for its boson and the fermion is auxiliary.

$$
\int d \theta d \bar{\theta} \bar{\Phi} e^{V} \Phi \stackrel{\mathrm{WZ}}{=} i \bar{\phi} D_{t}^{+} \phi+\bar{\psi} \psi, \quad D_{t}^{+} \equiv \partial_{t}-i\left(A_{t}+\sigma\right)
$$

Has not been considered before in [Hori ..., Fu et al., Heydeman et al.] New possibilities for building SUSY SYK-like models.

Action of QM

Pieces of the action (cont.):

Action of QM

Pieces of the action (cont.):

- Specify E for each Fermi:

$$
E_{C, m}^{i j}=0, \quad E_{a, m}^{i j} \sim \sum_{k, m^{\prime}} C\binom{\left|q_{i k}\right|-1 q_{k j}^{a}\left|q_{i j}^{a}\right|-1}{m-m^{\prime} m^{\prime}} \Xi_{m-m^{\prime}}^{i k} \Phi_{a, m^{\prime}}^{k j}
$$

Appears in the standard kinetic term

$$
\int d \theta d \bar{\theta} \overline{\mathcal{Y}} e^{V} \mathcal{Y} \stackrel{\mathrm{WZ}}{=} i \bar{\eta} D_{t}^{+} \eta+\bar{f} f-|E(\phi)|^{2}-\bar{\eta} \partial E \cdot \psi-\bar{\psi} \cdot \bar{\partial} E \eta
$$

Action of QM

Pieces of the action (cont.):

- Specify E for each Fermi:

$$
E_{C, m}^{i j}=0, \quad E_{a, m}^{i j} \sim \sum_{k, m^{\prime}} C\binom{\left|q_{i k}\right|-1 q_{k j}^{a}\left|q_{i j}^{a}\right|-1}{m-m^{\prime} m^{\prime}} \Xi_{m-m^{\prime}}^{i k} \Phi_{a, m^{\prime}}^{k j}
$$

Appears in the standard kinetic term

$$
\int d \theta d \bar{\theta} \overline{\mathcal{Y}} e^{V} \mathcal{Y} \stackrel{\mathrm{WZ}}{=} i \bar{\eta} D_{t}^{+} \eta+\bar{f} f-|E(\phi)|^{2}-\bar{\eta} \partial E \cdot \psi-\bar{\psi} \cdot \overline{\partial E} \eta
$$

- For each Fermi, specify holomorphic $J(\Phi)$ in dual representation of gauge and flavour symmetries, and $R(J)=-R(\mathcal{Y})+1$

$$
J_{C,-m}^{j i}=0, \quad J_{a,-m}^{j i} \sim \epsilon^{a b c} \sum_{k, m^{\prime}} C\left(\begin{array}{ccc}
q_{j k}^{b} & q_{k i}^{c} & \left|q_{i j}^{a}\right|-1 \\
m^{\prime}-m-m^{\prime} & -m
\end{array}\right) \Phi_{b, m^{\prime}}^{j k} \Phi_{c,-m-m^{\prime}}^{k i}
$$

Contributes as $\int d \theta \mathcal{Y} J+$ c.c.

Checks

Checks

- The Witten index matches $\mathcal{Z}_{\hat{\mathfrak{m}}}$, the topologically twisted index in flux sector $\hat{\mathfrak{m}}$.

Checks

- The Witten index matches $\mathcal{Z}_{\hat{\mathfrak{m}}}$, the topologically twisted index in flux sector $\hat{\mathfrak{m}}$.
- In particular, the 1-loop determinant of the 3 d vector multiplet is reproduced by the 1-loop determinants of $C_{m}^{i j}, \Xi_{m}^{i j}$ contained within

Checks

- The Witten index matches $\mathcal{Z}_{\mathfrak{\mathfrak { m }}}$, the topologically twisted index in flux sector $\hat{\mathfrak{m}}$.
- In particular, the 1-loop determinant of the 3 d vector multiplet is reproduced by the 1-loop determinants of $C_{m}^{i j}, \Xi_{m}^{i j}$ contained within
- This is the first explicit derivation of the vector 1-loop determinant of the topologically twisted index (the temporal gauge will be easier for this purpose).

Checks

- The Witten index matches $\mathcal{Z}_{\mathfrak{\mathfrak { m }}}$, the topologically twisted index in flux sector $\hat{\mathfrak{m}}$.
- In particular, the 1-loop determinant of the 3 d vector multiplet is reproduced by the 1-loop determinants of $C_{m}^{i j}, \Xi_{m}^{i j}$ contained within
- This is the first explicit derivation of the vector 1-loop determinant of the topologically twisted index (the temporal gauge will be easier for this purpose).
- \Longrightarrow BPS states of the QM account for the entropy of BPS black holes.

Possible corrections

Possible corrections

- Using δ-invariance of the gauge-fixed action, we can argue that $\widetilde{c}_{m}^{i j} \subset C_{m}^{i j}$ must remain free in the presence of corrections.

Possible corrections

- Using δ-invariance of the gauge-fixed action, we can argue that $\widetilde{c}^{i j} \subset C_{m}^{i j}$ must remain free in the presence of corrections.
- Although $\delta \Psi_{\mathrm{gf}}$ is not invariant under Q and $\mathrm{U}(1)_{R}$, one can use $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$ to prove Ward identities for Q and $\mathrm{U}(1)_{R}$ on observables.

Possible corrections

- Using δ-invariance of the gauge-fixed action, we can argue that $\widetilde{c}^{i j} \subset C_{m}^{i j}$ must remain free in the presence of corrections.
- Although $\delta \Psi_{\text {gf }}$ is not invariant under Q and $\mathrm{U}(1)_{R}$, one can use $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$ to prove Ward identities for Q and $\mathrm{U}(1)_{R}$ on observables.
- Assuming that interactions allowed by SUSY are E, J's, invariance under $\mathrm{SU}(2) \times \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$ implies

$$
E_{C}=J_{C}=0, \quad E_{a} \sim \Phi_{a} \sum_{m \geq 1} \Xi^{m}, \quad J_{a} \sim \epsilon^{a b c} \Phi_{b} \Phi_{c} \sum_{n \geq 0} \Xi^{n}
$$

Possible corrections

- Using δ-invariance of the gauge-fixed action, we can argue that $\widetilde{c}^{i j} \subset C_{m}^{i j}$ must remain free in the presence of corrections.
- Although $\delta \Psi_{\mathrm{gf}}$ is not invariant under Q and $\mathrm{U}(1)_{R}$, one can use $\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{\delta}=\left\langle\mathcal{O}_{n_{g} \leq 0}\right\rangle_{s}$ to prove Ward identities for Q and $\mathrm{U}(1)_{R}$ on observables.
- Assuming that interactions allowed by SUSY are E, J's, invariance under $\mathrm{SU}(2) \times \mathrm{U}(1)_{F}^{2} \times \mathrm{U}(1)_{R}$ implies

$$
E_{C}=J_{C}=0, \quad E_{a} \sim \Phi_{a} \sum_{m \geq 1} \Xi^{m}, \quad J_{a} \sim \epsilon^{a b c} \Phi_{b} \Phi_{c} \sum_{n \geq 0} \Xi^{n}
$$

- We have only kept $m=1, n=0$ but other terms cannot be ruled out. Not suppressed by EFT/power counting since $[\Xi]=0$ classically. Possible that Ξ gains a positive anomalous dimension.

Conclusion

Upshot:

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs
- Contains both 1d chiral and Fermi multiplets, introduces new ingredients for building SUSY SYK-like models.

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs
- Contains both 1d chiral and Fermi multiplets, introduces new ingredients for building SUSY SYK-like models.
Future work:

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs
- Contains both 1d chiral and Fermi multiplets, introduces new ingredients for building SUSY SYK-like models.
Future work:
- Analyse the QM, or a simpler toy model with chirals, in the large N limit by averaging over random couplings as an approximation (in progress).

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs
- Contains both 1d chiral and Fermi multiplets, introduces new ingredients for building SUSY SYK-like models.
Future work:
- Analyse the QM, or a simpler toy model with chirals, in the large N limit by averaging over random couplings as an approximation (in progress).
- Is the IR (after averaging) described by a Schwarzian? The dual supergravity analysis [Castro and Verheijden] suggests that it might not be.

Conclusion

Upshot:

- Constructed SUSY QM via dimensional reduction whose BPS states reproduces BPS BH entropy
- Expect near-BPS states to capture thermodynamics of near-BPS BHs
- Contains both 1d chiral and Fermi multiplets, introduces new ingredients for building SUSY SYK-like models.
Future work:
- Analyse the QM, or a simpler toy model with chirals, in the large N limit by averaging over random couplings as an approximation (in progress).
- Is the IR (after averaging) described by a Schwarzian? The dual supergravity analysis [Castro and Verheijden] suggests that it might not be.
- Perform a similar reduction on $\Sigma_{\mathfrak{g} \geq 1}$ or for ABJM.

