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Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that
requires quantum gravity:

For many near-extremal black holes, semi-classically, we have

M −Mext ∼
T 2

Mb

For T < Mb, mass is insufficient to radiate even a single Hawking
quantum =⇒ semi-classical analysis must break down, quantum
effects are important [Preskill et al. 1991].

Corrected spectrum might have a gap at Mb [Maldacena and
Susskind 1996], or different T scaling [Iliesiu and Turiaci 2020].

Ziruo Zhang A QM for Magnetic Horizons March 2, 2020 2 / 18



Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that
requires quantum gravity:

For many near-extremal black holes, semi-classically, we have

M −Mext ∼
T 2

Mb

For T < Mb, mass is insufficient to radiate even a single Hawking
quantum =⇒ semi-classical analysis must break down, quantum
effects are important [Preskill et al. 1991].

Corrected spectrum might have a gap at Mb [Maldacena and
Susskind 1996], or different T scaling [Iliesiu and Turiaci 2020].

Ziruo Zhang A QM for Magnetic Horizons March 2, 2020 2 / 18



Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that
requires quantum gravity:

For many near-extremal black holes, semi-classically, we have

M −Mext ∼
T 2

Mb

For T < Mb, mass is insufficient to radiate even a single Hawking
quantum =⇒ semi-classical analysis must break down, quantum
effects are important [Preskill et al. 1991].

Corrected spectrum might have a gap at Mb [Maldacena and
Susskind 1996], or different T scaling [Iliesiu and Turiaci 2020].

Ziruo Zhang A QM for Magnetic Horizons March 2, 2020 2 / 18



Thermodynamics of near-extremal black holes

Why study near-extremal black holes? They present a puzzle that
requires quantum gravity:

For many near-extremal black holes, semi-classically, we have

M −Mext ∼
T 2

Mb

For T < Mb, mass is insufficient to radiate even a single Hawking
quantum =⇒ semi-classical analysis must break down, quantum
effects are important [Preskill et al. 1991].

Corrected spectrum might have a gap at Mb [Maldacena and
Susskind 1996], or different T scaling [Iliesiu and Turiaci 2020].

Ziruo Zhang A QM for Magnetic Horizons March 2, 2020 2 / 18



Thermodynamics of near-extremal black holes

Why study near-extremal black holes? We have a chance, computations
are tractable:

Extremal BPS black holes have been studied quite thoroughly
[Strominger and Vafa 1996, enormous literature...]

Like the extremal case, near-horizon geometry of near-extremal
black holes typically AdS2 × Sd−2, eg. AdS2 × S2

r0 for 4d
Reissner-Nordström (RN) black hole.

Since Mgap � 1/r0, near-extremal spectrum can be studied by
dimensionally reducing on S2

r0 , obtaining a 2d dilaton-gravity
coupled to gauge fields.

Near extremality, reduces to a Schwarzian theory with coefficient
depending on the charge/chemical potential [Iliesiu and Turiaci
2020]. Same computation for near-BPS black holes in [Heydeman
et al. 2020], etc...
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Holographic description

What could be the dual QM? From a bottom-up approach:

We know that the SYK model is also described by the Schwarzian
in the IR [Sachdev, Ye, Kitaev, Maldacena, Stanford, etc...]

However, we need a generalization with global symmetries. Eg. 1
U(1) complex SYK [Sachdev 2015].

Also need SUSY to describe near-BPS black holes [Fu, Gaiotto,
Maldacena and Sachdev 2016] (only U(1)R). U(1)F ×U(1)R and
SUSY [Heydeman, Turiaci, Zhao 2022].

Can we be more systematic? Embed in higher-dimensional
AdS/CFT
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Embedding in higher-dimensional AdS/CFT

Consider near-BPS static dyonic black holes in massive Type IIA on
AdS4 × S6.

Solutions interpolate between AdS4 asymptotics and AdS4 × S2

near-horizon

Holographic RG flow between dual field theory compactified on S2

and the QM we seek.

Dual is a 3d N = 2 U(N)k theory with 3 adjoint chirals Φa=1,2,3

and W = Tr Φ1[Φ2,Φ3].

Asymptotics of black hole =⇒ dual theory is put on S2 × R with
a topological twist on S2.

Plan: reduce dual theory on S2 with topological twist and find the
QM.
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Which flux sector?

The field theory on S2 × R has flux sectors where dynamical gauge
fields have vevs A = mi

2 (1− cos θ)dϕH i.

KK spectrum depends heavily on mi. A priori, not clear which mi

to use.
Background of the reduction coincides with that of the
topologically twisted index [Benini and Zaffaroni 2015]

I(y) =
∑
{m}

∮ N∏
i=1

dui

2π
Zm(y, u) , Zm(y, u) = em·V

′(u)+Ω(u) .

Each Zm = Witten index of a gauged QM [Hori, Kim and Yi 2014]
I at large N reproduces the entropy of BPS black holes [Benini,
Khachatryan and Milan 2017].
Strategy: compute I at large N via saddle point in m; isolate the
m̂ that dominates I and reproduces BPS black hole entropy.
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Saddle point analysis

3 ways of computing I at large N , with the same result:

(I) Sum over m and solve for poles in continuous variables i→ t,
ui → u(t). Matches BPS entropy [Benini, Khachatryan, Milan
2018].

I =

∮ N∏
i=1

dui

2π

eΩ(u)

1− eV ′(u)
=

∑
û|V ′(û)=0

eΩ(û)

iNV ′′(û)
≈

∑
û|V ′(û)=0

eΩ(û) .

(II) mi → m(t), Saddle point in m and u. m: V ′(û) = 0, u:
m̂ · V ′′(û) + Ω′(û) = 0 fixes m̂ in terms of û and vice versa. Result
same as above.
(III) Isolate term for m̂ in (II) and perform saddle point in u

Zm̂ =

∮ N∏
i=1

dui

2π
em̂·V

′(u)+Ω(u) =
∑

û|V ′(û)=0

eΩ(û)

√
J
≈

∑
û|V ′(û)=0

eΩ(û)
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≈

∑
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eΩ(û)
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Saddle point analysis

By using m̂ in (II) in the reduction, saw from (III) that the Witten
index Zm̂ of the QM reproduces entropy of BPS black holes.

Global symmetry SU(3)F ×U(1)R. Magnetic charges na=1,2,3,
chemical potentials ∆a=1,2,3,

∑
a na = −2,

∑
a ∆a ∈ 2πZ. Saddle

point flux:

m̂(t) =

(
N

9kG2

) 1
3

f+ t , ρ(t) ≡ 1

N

di

dt
=

3

4

(
1− t2

)
, t ∈ [−1, 1] ,

G =
3∑

a=1

g+(∆a) , f+ ≡ −
3∑

a=1

(1 + na)
(
g′+(∆a)− g′+(0)

)
,

g+(∆) ≡ 1

6
∆3 − π

2
∆2 +

π2

3
∆ .

This result is also found in [Hosseini and Zaffaroni 2022].
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Background of the reduction

Topological twist (global magnetic fluxes) breaks 3d N = 2 → 1
complex supercharge Q, generating 1d N = 2. Also generically
breaks SU(3)F ×U(1)R → U(1)2

F ×U(1)R

For gauge fluxes m̂ to preserve Q, also turn on the backgrounds

σ = − m̂

2mkR2
, At =

m̂

2mkR2
, mk ≡

k e2
3d

2π
.

m̂ breaks gauge group U(N)→ U(1)N . Expect N = 2, U(1)N

gauged QM with SU(2)×U(1)2
F ×U(1)R global symmetry.

Add SYM action as regulator, taking e2
3d →∞ before R→ 0. Full

Lagrangian:

L = kLCS +
1

e2
3d
LSYM + LΦ,kin + Lsuperpot .

Unusual fact: background is not a saddle point of LCS.
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Failure of standard gauge-fixing procedure

Computing the KK spectrum of the vector multiplet requires gauge
fixing.

Why the Faddeev-Popov (FP) procedure usually works for SUSY
theories:

Standard FP procedure involves introducing c, c̃, b and adding
sΨgf.

Breaks SUSY since QsΨgf = −sQΨgf 6= 0 but violating term is
s-exact.

Does not affect s-closed observables, eg. Ward identities can be
derived.
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Failure of standard gauge-fixing procedure

In this case, expansion around background:

L = L(1) + L(2) + . . . , L(1) = Tr

(
km

4πR2
(At + σ)

)

Spectrum is computed from L(2). Presence of L(1) and
sL(1) = 1

4πR2 Tr
(
ikm [c, At + σ]

)
implies that L(2) is not invariant

under linearized BRST.
Previous argument fails since L(2) is not s-closed. No guarantee
that spectrum is SUSY.
Problem is absent in usual cases where the background is a saddle
point of L.
One might try the temporal gauge At + σ = 0. SUSY is manifest
but there are ∞ towers of light modes.
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Improved gauge fixing

Fix taken from [Pestun 2007]

Further include QΨgf in addition to sΨgf, i.e. δΨgf in total,
δ ≡ s+Q. Q ≡ Q+Q on physical fields, acts non-trivially on b, c.
Why is this allowed? Using the fact that QΨgf has ng = −1,−2,
easy to show that 〈Ong≤0〉δ = 〈Ong≤0〉s, observables are not
affected.

How does this help?

New gauge-fixed action is δ-closed since δL = 0 and δ2 =
time-translation + residual gauge transformations.
Can redefine A′t + σ′ = At + σ + 1

2{c, c} (still hermitian) so that
δ(A′t + σ′) = 0. Now

δL′(1) = δTr

[
km

4πR2
(A′t + σ′)

]
= 0

and L′(2) is invariant under linearized δ =⇒ spectrum is
supersymmetric.
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Field content of QM

Can now proceed:

choose gauge fixing function that fixes 3d U(N)→ time-dependent
U(1)N .
Expand in monopole harmonics [Wu and Yang 1976]

In the limit e3d →∞, R→ 0, e2
3dR� 1, massless modes from vector

multiplet:

Ait + σi, 1d U(1)N vector multiplet

For qij ≡ m̂i−m̂j

2 ≤ −1, bifund. chiral multiplet Ξij|m|≤−qij−1

For qij ≥ 1
2 , bifund. Fermi multiplet Cij|m|≤qij (from anti-ghosts)

Massless modes from each 3d chiral multiplet Φa:

For qaij ≡
m̂i−m̂j+na

2 ≥ 0, bifund. chiral multiplet Φij
a,|m|≤qaij

For qaij ≤ −1, bifund. Fermi multiplet Y ija,|m|≤−qaij−1
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Action of QM

For brevity, use superspace:

1 complex supercharge =⇒ superspace has 1 complex fermionic
coord. θ, derivatives D, D
For chirals, DΦ = 0. For Fermis, DY = E(Φ), R(E) = R(Y) + 1.
Both contain 1 complex boson and 1 complex fermion.

Pieces of the action:

Wilson line of charges km̂i, modifies Gauss’ law

km̂i(A
i
t + σi) =

∫
dθdθ m̂iV

i

Each chiral has a linear kinetic term for its boson and the fermion
is auxiliary.∫

dθdθ̄ ΦeV Φ
WZ
= iφD+

t φ+ ψψ , D+
t ≡ ∂t − i(At + σ)

Has not been considered before in [Hori ..., Fu et al., Heydeman et
al.] New possibilities for building SUSY SYK-like models.
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Action of QM

Pieces of the action (cont.):

Specify E for each Fermi:

EijC,m = 0 , Eija,m ∼
∑
k,m′

C
( |qik|−1 qakj |q

a
ij |−1

m−m′ m′ m

)
Ξikm−m′ Φkj

a,m′

Appears in the standard kinetic term∫
dθdθ̄YeV Y WZ

= iηD+
t η + ff −

∣∣E(φ)
∣∣2 − η∂E · ψ − ψ · ∂E η

For each Fermi, specify holomorphic J(Φ) in dual representation of
gauge and flavour symmetries, and R(J) = −R(Y) + 1

J jiC,−m = 0 , J jia,−m ∼ εabc
∑
k,m′

C
( qbjk qcki |qaij |−1

m′ −m−m′ −m

)
Φjk
b,m′ Φki

c,−m−m′

Contributes as
∫
dθYJ + c.c.
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Checks

The Witten index matches Zm̂, the topologically twisted index in
flux sector m̂.

In particular, the 1-loop determinant of the 3d vector multiplet is
reproduced by the 1-loop determinants of Cijm, Ξijm contained within

This is the first explicit derivation of the vector 1-loop determinant
of the topologically twisted index (the temporal gauge will be
easier for this purpose).

=⇒ BPS states of the QM account for the entropy of BPS black
holes.
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Possible corrections

Using δ-invariance of the gauge-fixed action, we can argue that
c̃ ijm ⊂ Cijm must remain free in the presence of corrections.
Although δΨgf is not invariant under Q and U(1)R, one can use
〈Ong≤0〉δ = 〈Ong≤0〉s to prove Ward identities for Q and U(1)R on
observables.
Assuming that interactions allowed by SUSY are E, J’s, invariance
under SU(2)×U(1)2

F ×U(1)R implies

EC = JC = 0 , Ea ∼ Φa

∑
m≥1

Ξm , Ja ∼ εabcΦbΦc

∑
n≥0

Ξn

We have only kept m = 1, n = 0 but other terms cannot be ruled
out. Not suppressed by EFT/power counting since [Ξ] = 0
classically. Possible that Ξ gains a positive anomalous dimension.
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Conclusion

Upshot:

Constructed SUSY QM via dimensional reduction whose BPS
states reproduces BPS BH entropy
Expect near-BPS states to capture thermodynamics of near-BPS
BHs
Contains both 1d chiral and Fermi multiplets, introduces new
ingredients for building SUSY SYK-like models.

Future work:

Analyse the QM, or a simpler toy model with chirals, in the large
N limit by averaging over random couplings as an approximation
(in progress).
Is the IR (after averaging) described by a Schwarzian? The dual
supergravity analysis [Castro and Verheijden] suggests that it
might not be.
Perform a similar reduction on Σg≥1 or for ABJM.
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