

Neutrino constraints from Gamma-Ray Bursts

Annika Rudolph

'Here, There and Everywhere' Neutrino Summer School

19.07.2023, Niels Bohr Institute

CARISBERG FOUNDATION

Interpreting neutrino (and multi-messenger) constraints for specific sources: Can we put limits on the amount of (accelerated) baryons in a specific gamma-ray burst?

Outline:

- General GRB picture & current neutrino limits
- Prompt emission models
- Application example: Modelling GRB 221009A in the internal shock scenario

Prompt phase characteristics

- Released energy:
 - $E_{iso} = 10^{49} 10^{55}$ ergs (but opening angle of few degrees)
- Cosmological distances:
 typical z ~ 2
- Large variety of **light curves with**
 - fast time variability

Prompt phase characteristics

• Released energy:

 $E_{iso} = 10^{49} - 10^{55}$ ergs (but opening angle of few degrees)

- Cosmological distances:
 typical z ~ 2
- Large variety of light curves with fast time variability
- Similar spectra (narrow

broken power law, 'Band function')

GRBs as high-energy neutrino sources?

GRBs as high-energy neutrino sources?

Aartsen

et al

201

N

 10^{9}

 10^{8}

GRBs as high-energy neutrino sources?

Aartse

201

 10^{9}

South ν_{μ} GRB

Cascade GRB (3 yr)

North ν_{μ} GRB (7 yr

 10^{8}

 10^{7}

Optically thick re-processed thermal spectrum

Black hole engine Jet collides with ambient medium (external shock wave)

N

 \sim

High-energy gamma rays

Visible light

Radio

Prompt emission

Afterglow

Optically thin (accelerated electrons) magnetic reconnection

B_x < 0

B_× > 0

Jet collides with ambient medium (external shock wave)

Visible light

Radio

Black hole engine

> Prompt emission

> > Afterglow

Optically thin (accelerated electrons) magnetic reconnection internal shocks Jet collides with ambient medium (external shock wave)

Visible light

Radio

Black hole engine

> Prompt emission

> > Afterglow

Optically thick thermal spectrum

Black hole engine

Credit: NASA

Optically thin (accelerated electrons) magnetic reconnection internal shocks Jet collides with ambient medium (external shock wave)

Visible light

Radio

Prompt emission

Afterglow

Optically thick thermal spectrum

Black hole engine Optically thin (accelerated electrons) magnetic reconnection internal shocks Jet collides with ambient medium (external shock wave)

Visible light

Radio

Any model should reproduce electro-magnetic observables -> Impact on neutrino spectra?

Prompt emission

Credit: NASA

Afterglow

Neutrino flux model dependance

Neutrinos from photo-hadronic interactions: production rate scales with **number density**

The dissipation model impacts eg:

- Dissipation radius R
- Efficiency: $E_{kin, jet} \rightarrow E_{non-thermal particles}$
- Jet composition
- Properties of accelerated particle distributions:
 - $E_{p, \min} \& E_{p_{\max}}$ + slope of power-law - $f_{p/e} = E_{p, \text{ non-th}} / E_{e, \text{ non-th}}$

Don't forget: Cooling of (intermediate) particles and threshold effects!

Neutrino flux model dependence

Neutrinos from photo-hadronic interactions: production rate scales with **number density**

For neutrino production in different models see also eg. Gao et al JCAP 11 (2012), Hummer et al PRL 118 (2012), Zhang & Kumar, PRL 110 (2013), Baerwald et al Astropart.Phys. 62 (2015)

Model dependence of neutrino fluxes

Side note: multiple emission regions

One-zone models:

 A single emission region representative for complete burst

Multi-zone models:

- Multiple emission regions along the jet with varying properties (densities)
- Decoupling of emission regions for different particle species -> typically lower neutrino predictions Bustamante et al Nature Comm. 6 (2015) Bustamante et al ApJ 837 (2017)

Modelling GRB 221009A in the internal shock scenario

GRB 221009A: The BOAT

- Very energetic: E_{iso} ~ 10⁵⁵ erg + super close: z ~ 0.151
 -> this combination: Once in 10.000 years
- seen by all major instruments and up to VHE (saturation & pile-up effects in many detectors)
- No neutrinos
- Peculiarity: LHAASO 18 TeV photon (BSM physics? Prompt/reverse shock/afterglow? Produced as a UHECR propagation effect?)

GRB 221009A: The BOAT

- Very energetic: E_{iso} ~ 10⁵⁵ erg + super close: z ~ 0.151
 -> this combination: Once in 10.000 years
- seen by all major instruments and up to VHE (saturation & pile-up effects in many detectors)
- No neutrinos
- Peculiarity: LHAASO 18 TeV photon (BSM physics? Prompt/reverse shock/afterglow? Produced as a UHECR propagation effect?)

Can we model the event in the internal shock scenario? What can we learn from neutrino constraints?

The internal shock scenario

Jet collides with ambient medium (external shock wave)

> High-energy gamma rays

X-rays

Visible light

Radio

Black hole engine

> Prompt emission

S

 \sim

 \sim

Afterglow

The internal shock scenario

central

engine

(1)

(3)

Μ₁,Γ₁

 M_2, Γ_2

Jet collides with ambient medium (external shock wave)

 M_3, Γ_3 M_4, Γ_4 d_2 d_3 \dots

Black hole engine

Modelling GRB 221009A

... to initial conditions

 $\langle R \rangle = 2 \langle \Gamma \rangle^2 c \delta t_{\rm var}$

preliminary analysis:
E_{iso} ~ 3 10⁵⁴ erg
E_{peak} ~ 1 MeV

Initial Lorentz factor distribution $\downarrow t_{quiet}/t_{eng} \downarrow t_{main}/t_{eng}$

- + assumptions on
- initial jet kinetic energy
- magnetic field
- accelerated particle spectra

GRB 221009A

From the initial shell distribution to observable quantities

Distance from central engine

Distance from central engine

Neutrino Constraints from Gamma-Ray Bursts | Neutrino Summer School | Annika Rudolph | 19.07.2023

GRB 221009A

From the initial shell distribution to observable quantities

Neutrino Constraints from Gamma-Ray Bursts | Neutrino Summer School | Annika Rudolph | 19.07.2023

GRB 221009A

0

From the initial shell distribution to observable quantities

Neutrino Constraints from Gamma-Ray Bursts | Neutrino Summer School | Annika Rudolph | 19.07.2023

GRB 221009A

0

From the initial shell distribution to observable quantities

(1) Model assumptions:

- 3 x more energy into protons than into electrons (consistent with source energetics)
 - Strong magnetic fields: "Synchrotron - dominated" Weak magnetic fields: "Inverse Compton – dominated"

(2) Multi – wavelength predictions

- 1. Below the MeV-peak similar predictions, differences in LAT band
- 2. Comparison to photon observations: Too wide around MeV peak?
- 3. Above ~TeV: suppression due to EBL
- 4. (Almost) no signatures from baryons-> source-internal absorption!

(3) Neutrino predictions

- 1. Neutrino limits not violated! :)
- 2. Peak in EeV regime -> radio arrays?

(3) Neutrino predictions

- 1. Neutrino limits not violated! :)
- 2. Peak in EeV regime -> radio arrays?
- Neutrino fluxes/energies are sensitive to f_{p/e} & dissipation radius (-> Lorentz factor and variability timescale)

Model-dependent constraints: eg. Ai + Gao ApJ 944 (2023)

Conclusions

- No neutrinos from GRBs: single source and stacking limits
- Predicted neutrino fluxes depend on density of emitting region -> modeldependent!
- Multi-zone models decouple production regions of different particle species
- Interpreting neutrino limits of GRB 221009A:
 - consistency with moderate baryon acceleration in the internal shock model for large radii
 - weak photon signatures of baryons. Beware of the cascade!
- Further topics: GRBs as UHECR sources despite stacking limits?