Ultra-high-energy neutrinos Damiano F. G. Fiorillo

Here, **There &** Everywhere

KØBENHAVNS UNIVERSITET UNIVERSITY OF COPENHAGEN

Niels Bohr Institute, Copenhagen

PhD Summer School on Neutrinos

July 17-21, 2023

Niels Bohr Institute, Copenhagen

VILLUM FONDEN

What are ultra-high-energy (UHE) neutrinos? How do we detect them? Why are they relevant? ♦ What do we learn from them? Energy spectrum Arrival direction

(Flavor composition)

Damiano Fiorillo

Outline

What are UHE neutrinos?

Multimessenger astrophysics

point back to sources

Damiano Fiorillo

 Astrophysical neutrinos can locate cosmic-ray sources!

Requires km³-sized detector!

Damiano Fiorillo

High-energy neutrino detection

IceCube detects neutrinos with TeV-PeV energies

UHE neutrino detection

Damiano Fiorillo

Snowmass, 2203.08096

UHE neutrino detection

Damiano Fiorillo

Snowmass, 2203.08096

UHE neutrino detection

Damiano Fiorillo

Snowmass, 2203.08096

Damiano Fiorillo

Cosmogenic neutrinos

Greisen-Zatsepin-Kuzmin limit at 50 EeV

$E_p \epsilon_{\gamma} \simeq m_p m_{\pi}$

Chemical composition
High redshift

$E_p \epsilon_{\gamma} \simeq m_p m_{\pi}$

Damiano Fiorillo

Astrophysical UHE neutrinos

 Requires dense target in source (model dependent)

UHE neutrino sources
need not be sources of
observable UHECRs

Astrophysical UHE neutrinos

Damiano Fiorillo

FSRQs bright, efficient UHE neutrino emitters

Low-luminosity BL Lac, efficient **UHECRs** emitters

Rodrigues et al., 2003.08392

Damiano Fiorillo

How do we detect them?

huge detectors

Damiano Fiorillo

Requires densely instrumented,

11

Askaryan effect

See also ARA, ARIANNA, RNO-G, ...

Giant Radio Array for Neutrino Detection (GRAND)

Damiano Fiorillo

Coherent emission by geomagnetic effect

 Mostly sensitive to Earth-skimming tau neutrinos

GRAND Collaboration, 1810.09994

14

Why UHE neutrinos?

Astrophysics

 Smoking gun signature of UHECRs interactions

High-redshift UHECRs sources

UHECRs composition

Individual UHE sources

Why UHE neutrinos?

Astrophysics

 Smoking gun signature of **UHECRs** interactions

High-redshift UHECRs sources

UHECRs composition

Individual UHE sources

Damiano Fiorillo

Particle physics

 Testing high-energy Beyond the Standard Model (BSM) physics

♦ BSM sources of UHE neutrinos (e.g. dark matter)

♦ BSM neutrino oscillations

BSM neutrino interactions

15

Damiano Fiorillo

Learning from UHE neutrinos

Damiano Fiorillo

Energy spectrum

Bright sources produce excess of events (multiplets) with similar direction

Bright sources produce excess of events (multiplets) with similar direction

Damiano Fiorillo

Assume angular uncertainty $\sim 2^\circ$, so we divide the sky in pixels of $2^{\circ} \times 2^{\circ}$ solid angle

Unresolved flux could produce fictitious multiplets by Poisson fluctuations

 $\Rightarrow \sim 3400$ pixels make fluctuations more likely - look-elsewhere effect

 Unresolved flux could produce fictitious multiplets by Poisson fluctuations

 ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the (background) diffuse flux?

 Unresolved flux could produce fictitious multiplets by Poisson fluctuations

 ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the (background) diffuse flux?

Steady-state sources

Damiano Fiorillo

Exceeds diffuse flux

- \bullet How many sources? n_0
- How far away? Star-formation rate
- \bullet How many neutrinos from each? L_{μ}
- ♦ All the sources cannot exceed the diffuse neutrino flux

 $\phi_{\nu}^{\text{diffuse}} \propto n_0 L_{\nu}$

See also Murase et al., 1607.01601

Source populations

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Source populations

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Most steady-state sources are unlikely to be discovered

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Conclusions

- UHE neutrinos point to UHECRs acceleration
- Energy spectrum as a probe of production mechanism
- Angular distribution as a probe of point sources
 - Very bright sources (e.g. Flat Spectrum Radio Quasars) may lead to multiplets
 - Multimessenger and catalog searches
- Flavor composition as a complementary probe

Backup slides

Lower efficiency of neutrino production!

Damiano Fiorillo

Cosmogenic neutrinos

Greisen-Zatsepin-Kuzmin limit at 50 EeV

 $E_N \epsilon_v \simeq m_p m_\pi$

Telescope Array lighter composition

Damiano Fiorillo

Cosmogenic neutrinos

Greisen-Zatsepin-Kuzmin limit at 50 EeV

Pierre Auger Observatory iron-dominated composition

Cosmogenic neutrinos

Damiano Fiorillo

Higher redshift sources imply higher flux

 $\rho(z) \propto (1+z)^m, z < z_{\max}$

UHECRs weakly sensitive to *m* or *z*_{max}

Giant Radio Array for Neutrino Detection (GRAND)

Damiano Fiorillo

Anisotropic
instantaneous response

 Earth rotation and many geographical sites allow nearly uniform sky coverage

GRAND Collaboration, 1810.09994

Pair annihilation

Aegoline that he have

m

Haine Haroe

mm

1 km \sim Radio γ

Damiano Fiorillo

Signal $\propto N^2$

Damiano Fiorillo

Energy spectrum

 $N_{\nu} \propto \Phi_{\nu} \sigma_{\nu N} \exp \left[-n \sigma_{\nu N} L(\theta) \right]$

 Degeneracy among cross section and flux (resolved by Earth absorption, see Valera et al., 2204.04237)

 \bullet Energy resolution $\sim 0.1 E_{\nu}$

 Discriminate non-standard production mechanisms (e.g. dark matter decay, see Fiorillo et al., 2307.02538)

Unresolved flux could produce fictitious multiplets by Poisson fluctuations

~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the background?

Damiano Fiorillo

Main question: smallest multiplet size to claim a point source detection at 3σ ?

- Multiplet size depends on the zenith angle because of background
- Transient sources can be identified more easily - in a short time there is less background

Transient sources

Damiano Fiorillo

Exceeds diffuse flux

 \bigstar How many sources explode? \mathscr{R}_0

How far away? Star-formation rate

 \bullet How many neutrinos from each? E_{ν}

♦ All the sources cannot exceed the diffuse neutrino flux

Source populations

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Source populations

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Brightest transient sources could be discovered, if they dominate diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Flavor composition

Damiano Fiorillo

- Tau fraction from comparing GRAND and IceCube-Gen2 radio
- Individual flavor discrimination from differences in shower structure?

Testagrossa et al., work in progress

Flavor composition

Damiano Fiorillo

- Tau fraction from comparing GRAND and IceCube-Gen2 radio
 - Individual flavor discrimination from differences in shower structure?

Testagrossa et al., work in progress

Unresolved flux could produce fictitious multiplets by Poisson fluctuations

◆ ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the background?

Damiano Fiorillo

Detector simulation

 Account for effects of Earth propagation

 Earth propagation leads to anisotropy of the signal

ν_{τ} regeneration

 Effective volume obtained in Valera et al., 2022 using NuRadioMC and NuRadioReco (Glaser et al., 2019)

Multiplet size

$$p = \sum_{k=n_i}^{+\infty} (\mu_i^k/k!)e^{-\mu_i}$$
 Local p-value
$$\pi_i(p) = \sum_{k=\bar{n}_i(p)}^{+\infty} \frac{\mu_i^k}{k!}e^{-\mu_i}$$
 Prob. of exces
$$P_0(p) = \prod_i (1 - \pi_i(p))$$
 Prob. of no ex

We require P_0 to be larger than the confidence level

Damiano Fiorillo

ss in a single pixel

xcess in any pixel

Multiplet size - transients

$$p = \sum_{k=n_i}^{+\infty} (\mu_i^k/k!)e^{-\mu_i}$$
 Local p-value
$$\pi_i(p) = \sum_{k=\bar{n}_i(p)}^{+\infty} \frac{\mu_i^k}{k!}e^{-\mu_i}$$
 Prob. of exces
$$P_0(p) = \prod_i (1 - \pi_i(p))$$
 Prob. of no ex

We require P_0 to be larger than the confidence level

Damiano Fiorillo

For burst duration δt and exposure T we introduce $T/\delta t$ bins in time

ss in a single pixel

xcess in any pixel

Chances of detection

Damiano Fiorillo

 $P(n_i) = \sum_{\sigma_i} \frac{\lambda^{\sigma_i} e^{-\lambda}}{\sigma_i!} \prod_{\alpha=1}^{\sigma_i} \int p(z_\alpha) dz_\alpha \frac{(b_i + \sum_{\alpha=1}^{\sigma_i} s(z_\alpha))^{n_i}}{n_i!} e^{-b_i - \sum_{\alpha=1}^{\sigma_i} s(z_\alpha)}$ Number of events follows a Poisson distribution expected number Redshift of events come distribution of from diff. each source background and follows star sources formation rate

Chances of detection

Damiano Fiorillo

 $P(n_i) = \sum_{\sigma_i} \frac{\lambda^{\sigma_i} e^{-\lambda}}{\sigma_i!} \prod_{\alpha=1}^{\sigma_i} \int p(z_\alpha) dz_\alpha \frac{(b_i + \sum_{\alpha=1}^{\sigma_i} s(z_\alpha))^{n_i}}{n_i!} e^{-b_i - \sum_{\alpha=1}^{\sigma_i} s(z_\alpha)}$ Number of events follows a Poisson distribution expected number Redshift of events come distribution of from diff. each source background and follows star sources formation rate

Damiano Fiorillo

Impact of detector design

 O^8 Earth atio eu

 10^{-15}

Impact of angular resolution

Chances of detection

Damiano Fiorillo

 For a given source population, three random variables:

Number of sources in a pixel

Source distance

Number of events from the source

 Averaging over all three, we obtain probability of significant multiplets

12