

Towards xenon-doped liquid argon for LEGEND

STUDENT TALK 12'+3'

Christoph Vogl* for the TUM LAr team *TU-Munich, Germany

NBIA Summer School on Neutrinos, July 17-21 2023, Copenhagen

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Introduction

Neutrinoless $\beta\beta$ **Decay is a powerful probe of** fundamental neutrino physics and cosmology

If proven to exist, we know that

Lepton number conservation is violated

Wiesinger, PhD thesis, TUM, 2020]

Neutrinos are Majorana particles

Look for $0\nu\beta\beta$ where $2\nu\beta\beta$ happens, e.g.¹³⁶Xe, ⁷⁶Ge

Strongest half-life limit on ⁷⁶Ge is 1.8×10^{26} yr, set by GERDA [Phys. Rev. Lett. 125, 252502]

MUCH LONGER THAN THE AGE OF THE UNIVERSE

25.2951.1

3

LEGEND-200 builds upon the experience of GERDA and MAJORANA

[~]200 kg of high-purity germanium detectors enriched in ⁷⁶Ge

Active background suppression in GERDA and LEGEND

Single-site, only one detector, and no LAr scintillation light → signal! Multiple detectors → Ge anticoincidence cut Multiple compton scattering and α or β backgrounds

→ pulse shape discrimination

External γ background → LAr active shield

Important for this **Active background suppression in GERD** talk! LEGEND 2020] TUM PhD thesis, ββ Wiesinger, α/β Ċ SIGNAL! BACKGROUNDS!

Single-site, only one detector, and no LAr scintillation light → signal! Multiple detectors → Ge anticoincidence cut Multiple compton scattering and α or β backgrounds

→ pulse shape discrimination

External γ background → LAr active shield

The scintillation process of LAr relies on excited argon dimer (excimer) formation

Either **ionization** & recombination, or **direct excitation** or Ar atom

In both cases argon excimers ${\rm Ar^*}_2$ form at the end

Ar₂* has unstable **singlet** & metastable **triplet** state

Singlet lifetime 5-10 ns Triplet lifetime **1.3-1.6 µs**

Pure LAr scintillation comes with some inconveniences

Xenon-doping addresses several problem of pure LAr scintillation

scintilation measurements

85 CM TALL

XeDLAr scintillation is observed by a triggered SiPM array, LLAMA

LLAMA measures simultaneously

- The photoelectron yield Y
- Effective triplet lifetime τ_3
- Effective attenuation length λ_{att}

with 16 VUV sensitive SiPMs (Hamamatsu VUV4) located at different distances from the light source.

LLAMA: Legend Liquid Argon Monitoring Apparatus [M. Schwarz et al., *ANIMMA 2021* (July 2021)]

An ²⁴¹Am source emitting 60 keV photons induces scintillation. The 3 source SiPMs **detect** the **light** at **~1 cm distance** from the interaction point

The xenon concentration is measured from the gaseous and liquid phases with IDEFIX

The Impurity DEtector For Investigation of Xenon (IDEFIX) can detect substances with masses less than 128 u (higher masses may be measured via higher order ionization).

The sensitivity is 30 μ L/L to 0.5 μ L/L depending on the substance

Substance (mass)	Sensitivity [µL/L]
Nitrogen (28)	~ 30
Oxygen (32)	~ 0.5
Xenon (134)	~ 0.8

[M. Guevara, B.Sc. thesis, TUM, 2023]

VL/L = PPM BY VOLUME OR MOLE

IDEFIX (mass spectrometer)

SCARF = SUBTERRANEAN CRYDGENIC ARGON FACILITY

SCARF (1 ton (XeD)LAr cryostat

Scintillation parameters for different Xe concentrations

General trend:

- Increase of p.e. yield and eff. attenuation length due to increased PDE and undone impurity quenching
- Decrease of effective triplet lifetime

Surprising observation:

- Decrease of p.e. yield and increase of effective triplet (from ~900 ns) lifetime at 3 ppm Xe w.r.t. 0 ppm
- Could be due to energy transfer mechanism and long-lived intermediate state

Scintillation parameters for different Xe concentrations

Target c_{Xe} [ppm(m)]	<i>Y</i> [pe]	τ_3 [ns]	$\lambda_{\rm att}$ [cm]
0	33.63(5)	941	41.6(9)
3	31.10(3)	1395	64(1)
10	39.15(3)	883	139(2)
50	54.51(5)	300	288(8)
100	59.33(6)	159	498(26)
300	64.99(4)	89	653(22)

At 300 μ g/g Xe in LAr the

- p.e. yield doubles
- effective triplet lifetime decreases to 90 ns
- effective attenuation length is > 6 m

[C. Vogl et al 2022 JINST 17 C01031]

Impact on LEGEND

Currently: Xe-doping as an R&D project for LEGEND-1000

Soon: Might get promoted to baseline design in the conceptual design report (CDR)

If so, strong argument to test it already in LEGEND-200

LEGEND-1000 cryostat (single string design) © LEGEND collaboration

Summary

Active background suppression with LAr scintillation light read-out is important for LEGEND

LAr scintillation is great, and even better with xenon doping

LEGEND will further pursue R&D on XeDLAr and might adopt it as baseline design for L-1000

For more details, just ask ;) After the school you can send me an email to <u>christoph.vogl@tum.de</u>

LEGEND-1000 is the next generation ⁷⁶Ge $\beta\beta$ experiment and features

1000 kg of enriched Ge detector mass

180 ton outer LAr mass (ALAr)

22 ton inner LAr mass (UGLAr) contained in ultra-clean copper tube

 10^{28} yr discovery sensitivity for 10 t yr exposure and 9-21 meV m_{$\beta\beta$} sensitivity fully covering inverted ordering

(10²⁷ yr for L-200 for 1 t yr exposure and 30-40 meV m_{$\beta\beta$} sensitivity)

 $\ensuremath{\mathbb{C}}$ LEGEND collaboration

LEGEND-1000 single string design

 $\ensuremath{\mathbb{C}}$ LEGEND collaboration

BSM opportunities for LEGEND-1000

TABLE II. A non-exhaustive listing of recent and proposed BSM physics searches by Ge-based experiments.

From the pre-conceptual design report (pCDR), arXiv:2107.11462v1

Physics	Signature	Energy	Experiment
		Range	
Bosonic dark matter	Peak at DM mass	$< 1 { m MeV}$	Majorana 63], Gerda 66]
Electron decay	Peak at 11.8 keV	$\sim 10~{\rm keV}$	MAJORANA [65]
Pauli exclusion principle violation	Peak at 10.6 keV	$\sim 10~{\rm keV}$	Majorana [63]
Solar axions	Peaked spectra, daily modulation	$< 10 {\rm ~keV}$	Majorana <mark>(65</mark> , 67]
Majoron emission	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$	Gerda [68]
Exotic fermions	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$	(proposed) [69 , 70]
Lorentz violation	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$	(proposed) [71–73]
Exotic currents in $2\nu\beta\beta$ decay	$2\nu\beta\beta$ spectral distortion	$< Q_{etaeta}$	(proposed) [74]
Time-dependent $2\nu\beta\beta$ decay rate	Modulation of $2\nu\beta\beta$ spectrum	$< Q_{etaeta}$	(proposed) [73]
WIMP and related searches	Exponential excess, annual modulation	$< 10 {\rm ~keV}$	CDEX [76]
Baryon decay	Timing coincidence	$> 10 {\rm ~MeV}$	Majorana 🔁
Fractionally charged cosmic-rays	Straight tracks	few keV	Majorana [78]
Fermionic dark matter	Nuclear recoil/deexcitation	< few MeV	(proposed) [79]
Inelastic boosted dark matter	Positron production	< few MeV	(proposed) [80]
BSM physics in Ar	Features in Ar veto spectrum	ECEC in ³⁶ Ar	GERDA [81]

XeDLAr scintillation mechanism #1

The scintillation of XeDLAr relies first on the formation of Ar excimers via the usual pathway (left), and then on collisions:

 $Ar_2^* + Xe \rightarrow Xe^* + Ar_2$

 $Xe^* + Ar \Rightarrow ArXe^*$

$$ArXe^* + Xe \Rightarrow Xe_2^* + Ar$$

The reaction rate depends on the xenon concentration. At reasonable xenon concentrations (< 1000 ppm), mostly triplet state argon excimers are shifted.

Ar ₂ *	4-10 ns singlet, 1.3-1.6 µs triplet	128 nm
ArXe*	4.7 µs	149 nm
Xe ₂ *	4 ns singlet, 22 ns triplet	175 nm

[Neumeier PhD thesis, G Nowak and J Fricke 1985 J. Phys. B: Atom. Mol. Phys. 18 1355, Soto-Oton: arXiv:2109.05858v1]

XeDLAr scintillation mechanism #2

Alternatively, xenon excimers can form starting with an initial photoexcitation by LAr scintillation light

Xe +γ → Xe*

Xe* + Ar → ArXe*

$$ArXe^* + Xe \rightarrow Xe_2^* + Ar$$

Ar ₂ *	4-10 ns singlet, 1.3-1.6 µs triplet	128 nm
ArXe*	4.7 µs	149 nm
Xe ₂ *	4 ns singlet, 22 ns triplet	175 nm

[Neumeier PhD thesis, G Nowak and J Fricke 1985 J. Phys. B: Atom. Mol. Phys. 18 1355, Soto-Oton: arXiv:2109.05858v1]

VUV4 SiPM PDE - Source of increase in p.e. yield?

14% PDE at 128 nm (VUV4 in LLAMA)

24% PDE at 175 nm

Assume perfect, monoenergetic shifting → p.e. yield increase of factor of 1.6

Second effect: Recovery of quenched light. Initial p.e. yield reduced to $^{\circ}80$ % due to 0.3 ppm O₂.

→ from 0.8 to 1.6 the increase is a factor of 2, compatible with observations

PDE measurement data

Vover = 4V, in vacuum

Successful injection of Xe into LAr

Target c_{Xe} [ppm(m)]	Measured c_{Xe} [ppm(m)]
50	37.9(79)
100	87.8(89)
300	360(59)

[C. Vogl et al 2022 JINST 17 C01031]

Energy distribution of GERDA phase II events

Phys. Rev. Lett. 125, 252502

XeDLAr scintillation time structure

Delayed hump in green (10 µg/g Xe in LAr) explained by Segreto's energy transfer model [10.1103/PhysRevD.103.043001]

C. Vogl, M.Sc. thesis, TUM 2022 10.13140/RG.2.2.23118.54084