



# **INVESTIGATING HIGH-ENERGY NEUTRINOS FROM BLAZARS WITH A LIKELIHOOD ANALYSIS OF THE ICECUBE OBSERVATORY DATA**

## **ELEONORA BARBANO**

ON BEHALF OF SARA BUSON, GAËTAN FICHET DE CLAIRFONTAINE, LENZ OSWALD, GIULIA ILLUMINATI, ANDREA TRAMACERE, ALESSANDRA AZZOLLINI, VARDAN BAGHMANYAN, LEONARD PFEIFFER

PhD Summer School on Neutrinos

## July 17-21, 2023

Niels Bohr Institute, Copenhagen

JULY 18, 2023

## **COPENHAGEN**



## AGN (BLAZARS) AS CANDIDATE SOURCES FOR HIGH-ENERGY NEUTRINOS





[1] Beckmann et al. (2012) [2] Rodrigues et al. (2020)





## **ICECUBE NEUTRINO OBSERVATORY**



### **Neutrino detection**

### **Charged-current interactions**

$$\begin{array}{c} \nu_e + X \xrightarrow{W^{\pm}} e^{\pm} + Y \\ \nu_\mu + X \xrightarrow{W^{\pm}} \mu^{\pm} + Y \\ \nu_\tau + X \xrightarrow{W^{\pm}} \tau^{\pm} + Y \end{array} \end{array} \begin{array}{c} \text{Charged particles} & \text{Cherenkov light} \\ \text{Charged particles} & \text{Cherenkov light} \\ \nu > \frac{c}{n} & \text{optical sensors} \end{array}$$

### Neutrino data

### Northern sky



### Northern data:

- $\nu$  interacts with Earth that
- shields the events  $\propto$
- arrival angle
- energy

### **Southern data:** Large background rate



## NEUTRINO ANALYSIS FRAMEWORK

## Maximization of the extended unbinned likelihood

- f = probability density function
- $x_i = i$ -th of N event in the dataset collected
- $\theta =$ parameters of the assumption

$$\mathscr{L}(\theta) = \prod_{i=1}^{N} f(x_i | \theta)$$

**Maximization:** The closer the parameters  $\theta$  of the assumption are to the real ones  $\theta^*$  the larger is  $\mathscr{L}(\theta)$ 

**Extended:** the number of neutrinos detected by IceCube follows a Poisson distribution

$$\mathscr{L}(\theta) = \exp(-\lambda) \prod_{i=1}^{N} \lambda \cdot f(x_i | \theta)$$

 $\lambda =$  expected number of detected  $\nu$ 

### **Unbinned:**

- limited amount of astrophysical neutrino events
- accurate estimation of model parameters

→ each event is weighted independently



## **NEUTRINO ANALYSIS FRAMEWORK**

## Maximization of the extended unbinned likelihood

$$\mathscr{L}(\theta) = \exp(-\lambda) \prod_{i=1}^{N} \lambda \cdot f(x_i | \theta)$$

### Goal

We want to test in different position in the sky the validity of 2 possible hypothesis

$$\mathcal{H}_0$$
;  $\mathcal{H}_1$ 

For each of them we construct the correspondent likelihood function

### **1.** Null hypothesis $\mathcal{H}_0$

In that region in the sky there is no astrophysical neutrino source

$$\mathscr{L}(\mathscr{H}_0(\theta)) = \exp(-N) \prod_{i=1}^N \mathscr{B}_i$$

### **2.** Signal hypothesis $\mathcal{H}_1$

In the same region in the sky there are background + an astrophysical neutrino point-source

The source emits:

- a certain number of neutrinos of signal  $n_S$
- according to a power-law with spectral index  $\gamma$

$$\frac{d\phi}{dE_{\nu}} = E^{-\gamma}$$

For a large dataset  $\lambda \rightarrow N = n_S + n_B$ 

$$\mathscr{L}(\mathscr{H}_1(\theta)) = \exp(-N) \prod_{i=1}^N N \cdot \frac{1}{N} \left( \frac{n_S}{N} \mathscr{S}_i + \frac{n_B}{N} \mathscr{B}_i \right)$$





1)  

$$\mathscr{L}(\vec{x}_i, E_i | n_S = 0) = \exp(-N) \prod_{i=1}^N \mathscr{B}_i(\sin \delta_i, E_i)$$

$$\mathscr{L}(\vec{x}_i, E_i | n_S, \gamma) = \exp(-N) \prod_{i=1}^N \frac{n_S}{N} \mathscr{S}_i(|\vec{x}_i - \vec{x}_s|, E_i; \gamma) + (1)$$









## LATEST ICECUBE RESULTS

Latest IC release (2022)



| Tested positions ~ 400 000 (Area pixel ~ 0.05 [deg^2]) | Tested positions ~ 3 000 000 (Area pixel ~ 0.01 [deg^2])                                                   |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Data acquired between 2011 and 2020                    | Data acquired between 2008 and 2015                                                                        |
| Only Northern sky published (dec >= -3°)               | Both Northern and Southern sky published (horizon at -5°)                                                  |
| Dataset reprocessed and not published                  | First 7 years of the published "PSTracks v3"<br>+ ~1700 starting track at Southern Emisphere not published |

[5] IceCube Collaboration (2022).[6] IceCube Collaboration (2017).







## LATEST ICECUBE RESULTS

### "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A"

IceCube Collaboration (2018)

A chance correlation between a high-energy neutrino and the potential counterpart can be rejected at the  $3\sigma$  level



log(-p\_value)

4.1

### TXS 0506+056

(77.358,5.693)

0



IceCube Collaboration (2022)

Excess of  $79^{+22}_{-20}$  neutrinos with a global significance of 4.2 $\sigma$  that they interpret as associated with NGC 1068





## **APPROACH**

## **1. Driver: Public Data**

✓ 10 years dataset released by IceCube collaboration in 2021

### **Motivations**

- Aiming for an open-source and user-friendly framework
- Full reproducibility of results

## **2. Tool**

~ There are several tools enabling a similar analysis, they might have some limitations for our goals

> **Developement of a framework to** analyze the IceCube 10 years public dataset

### **Current step-stones**

- Implementation of a software based on extended unbinned maximum likelihood
  - Models both spatial and energy pdfs



## **APPROACH**

## **1. Driver: Public Data**

10 years dataset released by IceCube collaboration in 2021

### **Motivations**

- Aiming for an open-source and user-friendly framework
- Full reproducibility of results

## **2. Tool**

~ There are several tools enabling a similar analysis, they might have some limitations for our goals

> **Developement of a framework to** analyze the IceCube 10 years public dataset

### **Current step-stones**

- Implementation of a software based on extended unbinned maximum likelihood
  - Models both spatial and energy pdfs



## **A BACKGROUND SKYMAP REALIZED**

I developed a code that produces sky maps

### **Features:**

- Create background maps by scrambling the data in right ascension
- Fixed spectral index  $\gamma$  for a power-law test source (preliminary test cariied out with  $\gamma = -2.0$ )
- Flexibility on the resolution of the map (or the pixel area, based on *Healpy* library)
- Choose the livetime of the experiment (1yr, 2yr, ... 10yr)
- Simulation of power-law point source, for a given flux and index



| 0 | TS | 19.85 |
|---|----|-------|

| Resolution              | NSIDE = 256<br>Area pixel ~ 0.02 [deg^2] |
|-------------------------|------------------------------------------|
| <b>Tested positions</b> | 776632<br>(dec <  81° )                  |
| Livetime                | 2011 - 2018<br>IC86I - IC86VII           |
| <b>Execution time</b>   | ~ 4 hours                                |



## STUDY OF DEDICATED REGIONS OF INTEREST

## TS sky maps for close-up view of a region

### **Features:**

- Analyze (real) sky maps
- Fixed spectral index  $\gamma$  for a power-law test source
- (preliminary test cariied out with  $\gamma = -2.0$ )
- Flexibility on the resolution of the map (or the pixel area, based on WCS library)
- Choose the livetime of the experiment
- (1yr, 2yr, ... 10yr)
- Simulation of power-law point source, for a given flux a index



| a | n | C |  |
|---|---|---|--|
|   |   |   |  |

| Resolution              | Area pixel ~ 0.2 [deg^2] |
|-------------------------|--------------------------|
| <b>Tested positions</b> | 20 x 20 = 400            |
| Livetime                |                          |
| <b>Execution time</b>   | ~ 13 s                   |
|                         |                          |



## VALIDATION OF THE CODE THROUGH THE OPEN-SOURCE SKYLLH FRAMEWORK

TXS 0506+056



## SkyLLH

It is an open-source Python3-based tool available at the IceCube Neutrino Observatory GitHub repository (https://github.com/icecube/skyllh)

customized for the analysis of the 10 years IC public dataset through the "extended unbinned likelihood maximization" method

## What it can be used for, following the tutorial

- Point-source analysis
- Maximizing the log-likelihood ratio to find the best TS value
- Calculating the flux  $\phi$  at the point-source position
- Calculating the significance (local p-value)



## PRELIMINARY RESULTS

## VALIDATION OF THE CODE THROUGH THE OPEN-SOURCE SKYLLH FRAMEWORK



- Both the codes reconstruct the TS best-fit in the same position
- Blazar and TS best-fit position are compatibles in the error of the resolution of the maps (angular distance =  $0.21^{\circ}$ )
- The TS values distributions follow a  $\chi^2_{1dof}$ with a clear deviation from the background at the tail
  - $\rightarrow$  presence of an astrophysical signal



## PRELIMINARY RESULTS

## VALIDATION OF THE CODE THROUGH THE OPEN-SOURCE SKYLLH FRAMEWORK





## **CONCLUSIONS AND PROSPECTIVES**

- **1.** Further validation of the code
- 2. Code improvements, e.g. free spectral index, further optimization
- **3.** Employing it to investigate compelling matter:
  - study a (possible) population(s) of astrophysical neutrino sources

- 4. Employ Machine Learning techniques for data selection / analysis
- 5. Release of the open-source code along with a user-friendly tutorial





## **CONCLUSIONS AND PROSPECTIVES**

- **1.** Further validation of the code
- 2. Code improvements, e.g. free spectral index, further optimization
- **3.** Employing it to investigate compelling matter:
  - study a (possible) population(s) of astrophysical neutrino sources

- 4. Employ Machine Learning techniques for data selection / analysis
- 5. Release of the open-source code along with a user-friendly tutorial

## THANKS FOR YOUR ATTENTION!



Next months

Next

years





# **BACKUP SLIDES**

# **ELEONORA BARBANO**

ON BEHALF OF SARA BUSON, GAËTAN FICHET DE CLAIRFONTAINE, LENZ OSWALD, GIULIA ILLUMINATI, ANDREA TRAMACERE, ALESSANDRA AZZOLLINI, VARDAN BAGHMANYAN, LEONARD PFEIFFER

PhD Summer School on Neutrinos

## July 17-21, 2023

Niels Bohr Institute, Copenhagen



JULY 18, 2023

## **COPENHAGEN**

## NEUTRINO ANALYSIS FRAMEWORK: EXPLICIT THE PARAMETERS

$$\mathscr{L}(\mathscr{H}_0(\theta)) = \exp(-N) \prod_{i=1}^N \mathscr{B}_i$$

Factorization of the spatial and energetic component of the Signal and Background pdfs:

$$\mathcal{S}_i = S_i \times \mathcal{C}_{\mathcal{S}_i} = \frac{1}{2\pi\sigma_i^2} \exp\left(\frac{1}{2\pi\sigma_i^2}\right)$$

$$\mathscr{B}_i = B_i \times \mathscr{C}_{\mathscr{B}_i} = \frac{1}{N} \cdot \frac{N_{\nu}}{\Omega}$$

$$\mathscr{L}(\vec{x}_i, E_i | n_S = 0) = \exp(-N) \prod_{i=1}^N \mathscr{B}_i(\sin \delta_i, E_i)$$

$$\mathscr{L}(\mathscr{H}_1(\theta)) = \exp(-N) \prod_{i=1}^N N \cdot \frac{1}{N} \left( \frac{n_S}{N} \mathscr{S}_i + \frac{n_B}{N} \mathscr{B}_i \right)$$

$$p\left(-\frac{|\vec{x}_i - \vec{x}_s|^2}{2\sigma_i^2}\right) \times \mathscr{C}_{\mathcal{S}_i}(\sin \delta_i, E_i; \gamma)$$

 $\frac{\nu}{D} \times \mathscr{C}_{\mathscr{B}_i}(\sin \delta_i, E_i)$ 

$$\mathscr{L}(\vec{x}_i, E_i | n_S, \gamma) = \exp(-N) \prod_{i=1}^N \frac{n_S}{N} \mathscr{S}_i(|\vec{x}_i - \vec{x}_s|, E_i; \gamma) + \left(1 - \frac{n_s}{N}\right) \mathscr{B}_i(\sin \delta_i, E_i; \gamma)$$





