Sky Anisotropies of

High-Energy Neutrino Flavours

Bernanda Telalovic, Mauricio Bustamante

What are the astrophysical neutrino flavour ratio directions?

Could we see new physics if they're different?

UNIVERSITY OF COPENHAGEN

• originate from HE hadronic processes.

- originate from HE hadronic processes.
- travel distances ~ **Gpc**.

- originate from HE hadronic processes.
- travel distances ~ **Gpc**.
- **rich phenomenology** for physics beyond the Standard Model

- originate from HE hadronic processes.
- travel distances ~ **Gpc**.
- **rich phenomenology** for physics beyond the Standard Model

IceCube has seen a flux of high-energy astrophysical neutrinos!

2

IceCube HESE 7.5 year event sample – best fit locations (102 events)

$$\Phi_{\alpha} = \frac{\Phi_0}{4\pi} f_{\alpha} \left(1 + \Delta \Phi_{\alpha} \right)$$

$$\Phi_{\alpha} = \frac{\Phi_0}{4\pi} f_{\alpha} \left(1 + \Delta \Phi_{\alpha}\right)$$

The flavour-flux at Earth:

 $\Delta \Phi^{e} = \Delta \Phi^{\tau}$

flavour anisotropy:

$\Delta \Phi^e = \Delta \Phi^\tau$

The flavour-flux at Earth:

Bernanda Telalovic, Mauricio Bustamante

$\Delta \Phi^e = \Delta \Phi^\tau$

The flavour-flux at Earth:

 $\Delta \Phi^{e} = \Delta \Phi^{\tau}$

The flavour-flux at Earth:

 $\Delta \Phi^e = \Delta \Phi^\tau$

The flavour-flux at Earth:

 $\Delta \Phi^e = \Delta \Phi^\tau$

The flavour-flux at Earth:

 $\Lambda \Phi^e = \Lambda \Phi^\tau$

Bernanda Telalovic, Mauricio Bustamante

What could cause this?

Detection

Lots of stuff

What could cause this?

What could cause this?

What could cause this?

What could cause this?

What could cause this?

Production

Lots of stuff

What could cause this?

Production

What could cause this?

Production

What could cause this?

But we care about flavour ratios

What could cause this?

What could cause this?

Propagation

Lots of stuff

What could cause this?

Propagation

What could cause this?

Propagation

What could cause this?

Propagation

What could cause this?

Propagation Vots of Lots of new physics stuff :D

$H_{\rm tot} = H_{\rm vac} + H_{\rm liv}$

couples to momentum 4-vector ↓

$H_{\rm tot} = H_{\rm vac} + H_{\rm liv}$

$H_{\text{tot}} = H_{\text{vac}} + H_{\text{liv}}$ $H_{\text{liv}} = \sum_{d=3} E^{d-3} \sum_{\ell,m} \mathbf{\hat{a}}_{\ell,m} Y_{\ell,m}$

$$H_{\rm tot} = H_{\rm vac} + H_{\rm liv}$$

$$H_{\text{LIV}} = \sum_{d=3} E^{d-3} \sum_{\ell,m} \hat{\mathbf{a}}_{\ell,m} Y_{\ell,m}$$

When:

$$d = 4 \land \hat{\mathbf{a}}_{1,-1} \neq 0$$

Lorentz Invariance Violation (LIV)

$$H_{\text{tot}} = H_{\text{vac}} + H_{\text{LIV}}$$

$$H_{\text{LIV}} = \sum_{d=3} E^{d-3} \sum_{\ell,m} \mathbf{\hat{a}}_{\ell,m} Y_{\ell,m} \quad \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{array}$$

When:

$$d = 4 \quad \land \quad \mathbf{\hat{a}}_{1,-1} \neq 0$$

ð

Lorentz Invariance Violation (LIV)

$$H_{\text{tot}} = H_{\text{vac}} + H_{\text{LIV}}$$

$$H_{\text{LIV}} = \sum_{d=3} E^{d-3} \sum_{\ell,m} \mathbf{\hat{a}}_{\ell,m} Y_{\ell,m} \xrightarrow{-0.25 \quad 0.00 \quad 0.25}$$

When:

$$d = 5 \quad \land \quad \mathbf{\hat{a}}_{1,0} \neq 0$$

$$\underbrace{= 5 \quad \land \quad \mathbf{\hat{a}}_{1,0} \neq 0}_{-0.25 \quad 0.00 \quad 0.25}$$

ð

Lorentz Invariance Violation (LIV)

8

If the distributions were isotropic:

The flavour all-sky-average current **dipole** anisotropy best fits:

Currently large uncertainties–compatible with isotropy at 1σ .

 $\Delta \Phi^{\mu}$

10

Currently large uncertainties–compatible with isotropy at 1σ .

More detectors – better:

- Statistics
- Angular resolution (KM3NeT)
- Sky coverage

More detectors – better:

- Statistics
- Angular resolution (KM3NeT)
- Sky coverage
 - IceCube (current)
 - KM3NeT (2025)
 - Baikal-GVD (2025)
 - IceCube Gen2 (2030)
 - P-ONE (2030)
 - TAMBO (2030)

11

Improvement by 2040:

• IC only: 25%

Improvement by 2040:

- IC only: 25%
- IC + Gen2: 55%
- All detectors: 73%

Improvement by 2040:

- IC only: 25%
- IC + Gen2: 55%
- All detectors: 73%

Improvement by 2040:

- IC only: 25%
- IC + Gen2: 55%
- All detectors: 73%

Improvement by 2040:

- IC only: 25%
- IC + Gen2: 55%
- All detectors: 73%

1

How anisotropic is LIV?

How anisotropic is LIV?

What about other BSM

anisotropies?

How anisotropic is LIV?

What about other BSM

anisotropies?

How well can we constrain them with flavour ratios?

Questions?

- R. Abbasi *et al.* (IceCube), The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, <u>Phys. Rev. D 104</u>, 022002 (2021), <u>arXiv:2011.03545</u> [astro-ph.HE].
- IceCube Collaboration, HESE 7.5 year data release, <u>https://icecube.wisc.edu/data-releases/2021/12/ hese-7-5-year-data/</u> (2021).
- Sungwook E. Hong *et al.*, Revealing the Local Cosmic Web from Galaxies by Deep Learning, <u>Astrophys.J. 913</u>, 1, 76 (2021), <u>arXiv:2008.01738</u> [astro-ph.CO]

$$\Delta \Phi_{\alpha} = \sum_{\ell > 0, m} a^{\alpha}_{\ell, m} Y_{\ell, m}$$

Take the difference:

$$\delta a_{\ell,m}^{\alpha,\beta} = a_{\ell,m}^{\alpha} - a_{\ell,m}^{\beta}$$

Quantifying anisotropy

$$\Delta \Phi_{\alpha} = \sum_{\ell > 0, m} a^{\alpha}_{\ell, m} Y_{\ell, m}$$

The anisotropy measure (power spectrum):

Quantifying anisotropy

$$\Delta \Phi_{\alpha} = \sum_{\ell > 0, m} a^{\alpha}_{\ell, m} Y_{\ell, m}$$

The anisotropy measure (power spectrum):

$$C_{\ell}^{\alpha} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell,m}^{\alpha}|^2$$

Quantifying anisotropy

$$\Delta \Phi_{\alpha} = \sum_{\ell > 0, m} a^{\alpha}_{\ell, m} Y_{\ell, m}$$

The anisotropy measure (power spectrum):

$$C_{\ell}^{\alpha} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell,m}^{\alpha}|^2$$
$$\Delta C_{\ell}^{\alpha,\beta} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |\delta a_{\ell,m}^{\alpha,\beta}|^2$$

Using Ice Cube Monte Carlo. We need:

Monte Carlo

Repetition

How do we recover the flux?

