Intrinsic Resolution Limits in Low-Energy Reconstruction with IceCube

1/13

Kaustav Dutta NBI Summer School 2023 July 17, 2023

Kaustav Dutta

NEUTRINO DESERVATORY

The IceCube Experiment

2/13

The IceCube Experiment

2/13

4. Sterile Neutrino detection

3/13

Kaustav Dutta

arXiv:2203.02303

JGU

4/13

Kaustav Dutta

- Which aspects are **limiting** the reconstruction performance at low energies?
- Information in events limited by

5/13

• What are the **resolution limits** if we have access to MC truth information?

Reconstruction strategies - Loss function

PRISMA⁺

Reconstruction strategies - Loss function

JOHANNES GUTENBERG

JGIL

PRISMA⁺

Reconstruction strategies - Loss function

ī(to)

Kaustav Dutta

No scattering

Scattering

Resolution: 16.476⁰

6/13

Hits: 12

Hits: 18 Resolution: 0.123⁰

Timing information

Direction information

7/13

8/13

- Loss function is a good approach and is quite fast (~0.003s/event).
- Not sure if it provides the optimal performance.

Solution?

8/13

- Loss function is a good approach and is quite fast (~0.003s/event).
- Not sure if it provides the optimal performance.
- Solution? Use of likelihood approach with the true underlying PDF
- Problem... Grid-like structure of arrays, biased photon sampling by sensors, PDF changes with position/direction

Solution? Randomised detector geometry!

8/13

- Loss function is a good approach and is quite fast (~0.003s/event).
- Not sure if it provides the optimal performance.
- Solution? Use of likelihood approach with the true underlying PDF
- Problem... Grid-like structure of arrays, biased photon sampling by sensors, PDF changes with position/direction

Solution? Randomised detector geometry!

Good agreement between PDFs!

Getting PDFs by VBW KDEs

9/13

Direction information: $\hat{\theta}_{opt} = \arg \max \left[\mathcal{L}(\gamma \cdot \mathbf{u} | \boldsymbol{\theta}) \right]$

Timing information: $\hat{ heta}_{opt} = \arg \max \left[\mathcal{L}(\Delta t | m{ heta}) \right]$

10/13

PRISMA⁺ Combined Analysis using Synergic Information

11/13

Summation of likelihood values log(Δt[ns]) 0 . $^{-1}$ -2 1.25 0.25 0.50 0.75 1.00 1.50 1.75 2.00 Angle [rad]

$$\log \mathcal{L}_{ ext{joint}} = \log \mathcal{L}_{ ext{direction}}(\gamma \cdot \mathbf{u}| heta) + \log \mathcal{L}_{ ext{timing}}(\Delta t| heta)$$

11/13

PRISMA⁺ Combined Analysis using Synergic Information

JG U

11/13

 $\log \mathcal{L}_{ ext{joint}} = \log \mathcal{L}_{ ext{direction}}(\gamma \cdot \mathbf{u}| heta) + \log \mathcal{L}_{ ext{timing}}(\Delta t| heta)$

ilite a

Kaustav Dutta

NBI Summer School 2023

Combined Analysis using Synergic Information

11/13

 $\log L(oldsymbol{\gamma}\cdot\mathbf{u},\Delta t| heta)$

Synergic Case (n=0.3)

Comparison with benchmark algorithm

12/13

Ongoing & Future Work

13/13

• Try to improve the modelling of the PDF (more statistics).

Thank you!

Kaustav Dutta

Questions?

Backup Slides

Effect of Shower Spread

Backup

Backup

Backup

Timing information

Direction information

Backup

Kaustay Dutta

Effect of Sensor Efficiencies

IG

- Select the PMT in terms of **spatial proximity** to the point of photon impact.
- Include acceptance curve information.

Backup

Assume that photon arrives along the PMT axis : Truth information smeared.

10.00.00 00

Neutrinos in the Standard Model

Backup

186 o 1

Backup

ilite a

Kaustav Dutta

Photon Propagation Code

Backup

ALC: NO 1

Kaustav Dutta

Backup

Good angular resolution: Neutrino astronomy

• ~0.6⁰ at 10 TeV

Kaustav Dutta

• Vertex can be outside the detector: **Increased** effective volume

$\mathbf{v}_{e}^{}, \mathbf{v}_{\tau}^{}$ and all-flavor neutral current

Fully active calorimeter: **High energy resolution** Angular reconstruction above ~50 TeV

Image: J. Phys, Conf. Ser. 888 012007

Kaustav Dutta

Backup

IceCube & Oscillations

osmic rays

IceCub

- For O(10) GeV neutrinos and below, earth diameter provides perfect L/E
- We can look at oscillations in the energy vs. $\cos(\text{zenith})$ (∞ L) plane

Tau Neutrino Appearance

Backup

Kaustav Dutta

IceCube Upgrade modules

Backup

- 2D parameter space: zenith, azimuth
- scipy.minimize (seed=truth)

Backup

Kaustav Dutta

JGU

Limitations of loss function approach

Backup

NBI Summer School 2023

JGU

Idealistic Case

Backup

- No scattering
- Hit photon MC truth direction

Cutoff Optimization

Backup

dia a

PDF dependence on vertex/direction

Fixed Vertex

Fixed Vertex

Backup

Backup

IVERSITAT MAINZ

Timing information

Energies & Hits

Backup

Kaustav Dutta

Direction information: $\hat{\theta}_{opt} = \arg \max \left[\mathcal{L}(\gamma \cdot \mathbf{u} | \boldsymbol{\theta}) \right]$

PRîSMA⁺

Kaustav Dutta

nllh vs loss func minimisation, Truth (Upgrade) nllh vs loss func minimisation, Truth (Upgrade) nllh (VBW KDE), $\Delta t/t <= 0.15$ --- nllh (VBW KDE), Δt/t<=0.15 35 nllh (FBW KDE), $\Delta t/t <= 0.15$ nllh (FBW KDE), Δt/t<=0.15 loss func, Δt/t<=0.15 loss func , $\Delta t/t <= 0.15$ 30 25 20 Median ∆0 12 Median ∆0 50 10 10 5 5 0 0 50 100 150 200 250 300 50 100 150 200 250 Hit Count Hit Count

Backup

Timing information: $\hat{\theta}_{opt} = \arg \max \left[\mathcal{L}(\Delta t | \boldsymbol{\theta}) \right]$

Noise (Uniform & Clustered)

Backup

Noise uniformly distributed

Noise clustered around a specific Δt each event.

Noise (Uniform & Clustered)

Backup

Combined PDF (Truth)

Backup

Kaustav Dutta

Combined PDF (PMT smeared)

Backup

JG U

Backup

Kaustav Dutta

Signal Purity in GNN reco

Backup

