

# The Role of Electromagnetic Cascades in High-Energy Neutrino Astrophysics

NBIA International PhD Summer School on Neutrinos: Here, There & Everywhere

Antonio Capanema Ph.D. Advisor: Arman Esmaili









## The High-Energy Multimessenger Picture



## The High-Energy Multimessenger Picture

ÇMB/EBL

UHECR

TA/Auger



### CMB/EBL

Pair Production  $\gamma\gamma \rightarrow e^+e^-$ 

> Inverse Compton Scattering

> > $e\gamma \to e\gamma$

ÇMB/EBL

(...)

### Electromagnetic Cascade

## The High-Energy Multimessenger Picture

UHECR

TA/Auger





### CMB/EBL

Pair Production  $\gamma\gamma \rightarrow e^+e^-$ 

> Inverse Compton Scattering

 $e\gamma \rightarrow e\gamma$ 

ÇMB/EBL

(...)

Electromagnetic Cascade

## The High-Energy Multimessenger Picture

UHECR

TA/Auger

IceCube





# **IceCube Observations**



Antonio Capanema

|   |             | $\Phi_{\rm astro} [{\rm GeV^{-1}cm^{-2}s^{-1}sr^{-1}}]$ | $\gamma_{\rm astro}$ | $E_{\rm th}$ [ |
|---|-------------|---------------------------------------------------------|----------------------|----------------|
| > | HESE 7.5y   | 2.15                                                    | 2.89                 |                |
|   | Cascades 6y | 1.66                                                    | 2.53                 |                |
|   | TG 9.5y     | 1.44                                                    | 2.28                 | Z              |
|   |             |                                                         |                      | T              |





# Astrophysical Neutrino Production ...and why it should necessarily be accompanied a comparable gamma-ray yield

2 main scenarios: pp or  $p\gamma$ 



Antonio Capanema

# The Extragalactic Gamma-ray Background



Antonio Capanema

### The EGB measured by Fermi-LAT









Multimessenger Constraints Chi-square fit to the EGB data:  $\chi^2 = \min_{\alpha_j} \left\{ \left[ \sum_{i} \frac{\left(F_i^{\text{EGB}} - F_i^{\text{casc}} - \sum_{j} \alpha_j F_i^j\right)^2}{\sigma_i^2} \right] + \sum_{i} \left[ \frac{(\alpha_j - 1)^2}{\zeta_i^2} \right] \right\}$  $1\sigma C.L$ model B 2σ C.L. model A 3.5 Cascades (4 yi IceCube sources are gamma-ray opaque! 2.0 ⊅<sub>astro</sub>/10<sup>−18</sup> [GeV 1.5 0.5  $E_{\rm br} = 10 \, {\rm TeV}$  $E_{\rm br} = 1 \, {\rm TeV}$ 2.2 2.4 2.6 2.8 3.0 3.2 2.0

s<sub>h</sub>





## CMB PP threshold ~ 100 TeV

Leading particle regime

CMB

EBL

Multiplication regime

PP threshold:

CMB

 $E_{\rm th} = m_e^2/\epsilon_{\rm bkg}$  :

### EBL PP threshold ~ 100 GeV

# EM Cascades: A closer look

Low energy regime



## CMB PP threshold $\sim 100 \text{ TeV}$

Leading particle regime

CMB

Multiplication regime

CMB



PP threshold:

 $E_{\rm th} = m_e^2 / \epsilon_{\rm bkg}$ 



EBL

### EBL PP threshold ~ 100 GeV

# **EM Cascades:** A closer look

Low energy regime

### Can cascades produce HE neutrinos?









# **Muon Pair Production:** $\gamma \gamma \rightarrow \mu^+ \mu^- (E\epsilon \ge m_{\mu}^2)$

$$\lambda^{-1}(E) = \int_{0}^{\infty} d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2}$$

$$\Lambda^{-1}(E) = \int_{0}^{\infty} d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2} \, \sigma(1 + \epsilon)$$

$$\Lambda^{-1}(E) = \int_{0}^{\infty} d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2} \, \sigma(1 + \epsilon)$$













# **Muon Pair Production:** $\gamma \gamma \rightarrow \mu^+ \mu^- (E\epsilon \ge m_{\mu}^2)$

$$\lambda^{-1}(E) = \int_0^\infty d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2}$$
$$\Lambda^{-1}(E) = \int_0^\infty d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2} \, \sigma(1)$$













# **Muon Pair Production:** $\gamma \gamma \rightarrow \mu^+ \mu^- \quad (E\epsilon \ge m_{\mu}^2)$

$$\lambda^{-1}(E) = \int_0^\infty d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2}$$
$$\Lambda^{-1}(E) = \int_0^\infty d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2} \, \sigma(1)$$













# Muon Pair Production: $\gamma \gamma \rightarrow \mu^+ \mu^- \quad (E\epsilon \ge m_{\mu}^2)$

$$\lambda^{-1}(E) = \int_{0}^{\infty} d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2}$$
$$\Lambda^{-1}(E) = \int_{0}^{\infty} d\epsilon \, n(\epsilon) \int_{-1}^{1 - \frac{2m^2}{E\epsilon}} d\mu \, \frac{1 - \mu}{2} \, \sigma(1)$$











# **UHE Neutrinos from Cascades at High-Redshifts**



Antonio Capanema





# Fluxes @ Earth



[Esmaeili, AC, Esmaili, Serpico (2022)]

$$\varepsilon_{\gamma}^{2} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\varepsilon_{\gamma}}(\varepsilon_{\gamma}) \simeq \frac{2}{3K_{\pi}} \varepsilon_{\nu}^{2} \frac{\mathrm{d}N_{\nu}}{\mathrm{d}\varepsilon_{\nu}}(\varepsilon_{\nu}) \bigg|_{\varepsilon_{\nu}=\varepsilon_{\gamma}/2} \Rightarrow \mathscr{C}_{\gamma}/\mathscr{C}_{\nu} \simeq \begin{cases} 2/3, \quad pp \\ 4/3, \quad p\gamma \end{cases} \begin{cases} 0.44, \quad pp \\ 0.77, \quad p\gamma \end{cases}$$

Antonio Capanema





# Thank you!







# Backup Slides

# Astrophysical Neutrinos: **Current Status**

- Diffuse flux from ~10 TeV to ~few PeV
- Quasi-equal flavors  $\Rightarrow pp$  or  $p\gamma$
- $\diamond$  Quasi-isotropic  $\Rightarrow$  extragalactic
- Point-source searches cannot account for bulk of events



Antonio Capanema







Multimessenger Constraints







# Multimessenger Constraints

[AC, Esmaili, Serpico (2021)]



|                             | $E_{\gamma}$ [GeV] |     |        |              |                       |                       | $\Delta \chi^2$ |
|-----------------------------|--------------------|-----|--------|--------------|-----------------------|-----------------------|-----------------|
|                             |                    | SFR | BL LAC | $z\gtrsim 3$ | $0 \le z \le 10^{-2}$ | $0 \le z \le 10^{-3}$ | 4.61            |
| $F_{\rm e} = 1  { m TeV}$   | EGB > 100  MeV     | 47  | 137    | 35           | 232                   | 110                   |                 |
| $E_{\rm br} = 1$ lev        | EGB > 10  GeV      | 37  | 113    | 29           | 211                   | 103                   | 6.18            |
| $F_{\rm e} = 10  {\rm TeV}$ | EGB > 100  MeV     | 19  | 39     | 4.5          | 49                    | 5.1                   | 44.00           |
| $E_{\rm br} = 10$ lev       | EGB > 10  GeV      | 6   | 26     | 3.5          | 40                    | 4.1                   | 11.83           |

Antonio Capanema

High-z sources: challenging energy budgets

E.g.: SMBHs at 6 < z < 6.1 and  $E_{br} = 10$  TeV Required:  $L_{\nu} \approx 2 \times 10^{51}$  erg/s SMBH birth via SN/GRB:  $L_{tot} \sim 10^{44}$  erg/s Eddington accretion:  $L_{tot} \approx 4.4 \times 10^{51}$  erg/s





# Low-z sources

Antonio Capanema





