Modelling neutrino emission from Active Galactic Nuclei (AGN)

Arifa Khatee Zathul University of Wisconsin-Madison In collaboration with: Marjon Moulai, Francis Halzen

50 m

IceTop

(Credit: icecube.wisc.edu/science/icecube/)

- 1. 1 km³ volume Cherenkov detector
- 2. Discovered diffuse flux of astrophysical neutrinos
- 3. Started to pinpoint locations of sources

Characteristics of identified point sources

(Credit: IceCube Collaboration, Science 378, 6619, 538-543 (2022))

2 known ν point sources:

- 1. NGC 1068:
 - Seyfert 2 galaxy
 - z = 0.0038
 - Steady source
 - 2011-2020: 79⁺²²₋₂₀ neutrinos
- 2. TXS 0506+056:
 - Blazar
 - z = 0.3365
 - Transient source
 - Sept 2017: 290 TeV neutrino
 - 2014-2015: 13 ± 5 neutrinos

All are AGNs ($M = 10^7 M_{\odot}$)

AGN as an accelerator and a target

- Supermassive black holes in the center of *active* galaxies:
 - accelerate protons
 - produce neutrinos in the dense targets surrounding them
- Accelerator: turbulent magnetic fields associated with accretion disk, in-fall of matter around the black hole
- Targets: dense radiation fields (X-rays) and in-falling matter (large optical depth)

(Credit: D. Wilkins, <u>danwilkins.net/research</u>)

AGN as an accelerator and a target

- Supermassive black holes in the center of *active* galaxies:
 - accelerate protons
 - produce neutrinos in the dense targets surrounding them

Our goal: Use dimensional analysis to predict neutrino and gamma-ray fluxes and make comparisons to data.

How are protons accelerated?

Shock Acceleration

Charged

 particles are
 repeatedly
 reflected
 between shock
 wave-fronts

Magnetic Reconnection

- B-fields break
 & reconnect
 with other
 B-fields
- Heat + kinetic energy are released

Plasma Turbulence

 Charged particles scatter off magnetized plasma blobs

Producing astrophysical neutrinos

1. Inelastic proton-proton collision (pp):

$$p + p \rightarrow n_{\pi} (\pi^0 + \pi^+ + \pi^-) + X$$

2. Photomeson production (pγ):

$$p + \gamma \longrightarrow n + \pi^+ p + \gamma \longrightarrow p + \pi^0$$

$$P + P + \overline{v_{\mu}, v_{\mu}, \overline{v_{e}}}$$

• Pionic neutrinos and gamma-rays:

$$\begin{array}{l} \pi^+ \longrightarrow e^+ + \nu_e + \nu_\mu + \bar{\nu}_\mu \\ \pi^- \longrightarrow e^- + \bar{\nu}_e + \bar{\nu}_\mu + \nu_\mu \\ \pi^0 \longrightarrow \gamma + \gamma \end{array}$$

(K. Z. Arifa, Modelling v emission from AGNs)

Producing neutrinos in AGNs

1. Proton injection rate:

W

$$Q_p(E_p) = Q_{p,0} \left(\frac{E_p - m_p c^2}{E_{p,0}}\right)^{-\gamma_p}$$

Accelerator (black hole)

(Credit: F. Halzen, ArXiv:2202.00694 & Tjus et al., Phys. Rev. D 89, 123005)

Producing neutrinos in AGNs

1. Proton injection rate:

$$Q_p(E_p) = Q_{p,0} \left(\frac{E_p - m_p c^2}{E_{p,0}}\right)^{-\gamma_p}$$

2. Neutrino production rate:

$$Q_{\nu}(E_{\nu}) = 192(1 - e^{-\tau_{pp}}) Q_{p,0} \left(\frac{24 E_{\nu}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(pp)
$$Q_{\nu}(E_{\nu}) = 60(1 - e^{-\tau_{p\gamma}}) Q_{p,0} \left(\frac{20 E_{\nu} - m_{p}c^{2}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(p\gamma)

Accelerator (black hole)

 γ , p – target (enveloping black hole)

(Credit: F. Halzen, ArXiv:2202.00694 & Tjus et al., Phys. Rev. D 89, 123005)

Producing neutrinos in AGNs

1. Proton injection rate:

$$Q_p(E_p) = Q_{p,0} \left(\frac{E_p - m_p c^2}{E_{p,0}}\right)^{-\gamma_p}$$

2. Neutrino production rate:

$$Q_{\nu}(E_{\nu}) = 192(1 - e^{-\tau_{pp}}) Q_{p,0} \left(\frac{24 E_{\nu}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(pp)
$$Q_{\nu}(E_{\nu}) = 60(1 - e^{-\tau_{p\nu}}) Q_{p,0} \left(\frac{20 E_{\nu} - m_{p}c^{2}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(p\gamma)

Accelerator (black hole)

 γ , p – target (enveloping black hole)

(K. Z. Arifa, Modelling v emission from AGNs)

Producing neutrinos in AGNs

1. Proton injection rate:

$$Q_p(E_p) = Q_{p,0} \left(\frac{E_p - m_p c^2}{E_{p,0}}\right)^{-\gamma_p}$$

2. Neutrino production rate:

$$Q_{\nu}(E_{\nu}) = 192(1 - e^{-\tau_{pp}}) Q_{p,0} \left(\frac{24 E_{\nu}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(pp)
$$Q_{\nu}(E_{\nu}) = 60(1 - e^{-\tau_{p\gamma}}) Q_{p,0} \left(\frac{20 E_{\nu} - m_{p}c^{2}}{E_{p,0}}\right)^{-\gamma_{p}}$$
(p\gamma)

3. Neutrino flux detected:

$$\phi_{\nu}^{\rm PS}(E_{\nu}) = \phi_0^{100 \, {\rm TeV}} \left(\frac{E_{\nu}}{100 \, {\rm TeV}}\right)^{-\gamma_{astro}} = \frac{(1+z)^2}{4\pi d_L^2} Q_{\nu}((1+z)E_{\nu})$$

(Credit: F. Halzen, ArXiv:2305.07086)

(Credit: F. Halzen, ArXiv:2305.07086)

In-fall (shock-wave) model:

For NGC 1068 $(M = 10^7 M_{\odot})$: $\tau_{pp} \simeq 0.843$, $\tau_{p\gamma} \simeq 0.1$

(Credit: F. Halzen, ArXiv:2305.07086)

Neutrino and intrinsic γ -ray spectrum

(K. Z. Arifa, Modelling v emission from AGNs)

they cascade in

NGC 1068

Multiwavelength spectrum of NGC 1068 10^{-9} Work in progress 10^{-10} $E^2 \Phi \, [\text{TeV cm}^{-2} \, \text{s}^{-1}]$ 10^{-11} pp 10^{-12} pγ 10^{-13} 10^{-14} 10^{3} 10^{4} 10^{5} 10^{0} 10^{3} 10^{6} Energy [GeV] Energy [GeV] (Credit: IceCube Collaboration, Science 378, 6619, 538-543 (2022))

NGC1068 pp

NGC1068 $p\gamma$

 γ_{uncasc} , NGC1068 pp

---- γ_{uncasc} , NGC1068 p γ

IceCube data

Future work:

0.1 to 100 GeV gamma-rays

Future work: How do EM cascades develop?

- Pair production: $\gamma \rightarrow e^+ + e^-$
- One-photon bremsstrahlung

2. Development stops when γ -rays are below pair-production threshold energy

(Credit: J. Matthews, Astroparticle Physics 22 (2005) 387–397)

^{1.} e^{\pm} lose energy at each level via:

- 1. Neutrino production rate depends on optical depth of target
- 2. Observation of γ -ray flux accompanying the neutrino spectrum at lower energy levels

3. Ongoing work:

- Calculate the cascaded and attenuated γ -ray flux and compare it to data
- Extend the model to sources like TXS 0506+056

Thank you!

Back-up slides

How much γ -rays are produced?

• The multi-messenger relation:

Note: The factor of 1/3 is due to averaging over the 3 neutrino flavours

Future work: Proposed Methodology

Each contribute ~1% of total astrophysical diffuse flux

(Credit: IceCube Collaboration et al., Science 378 (2022) 538-543)

W