

NBIA summer school Copenhagen 2023

Sheet 1: Neutrino astronomy Walter Winter

The easiest way to calculate expected event rates in neutrino telescopes, such as IceCube, is the **effective area** A_{eff} describing the detector response. The number of expected neutrino events N for a flux from a point source can be obtained with

$$N = \int_{0}^{\infty} dE \int_{0}^{t_{\rm obs}} dt A_{\rm eff}(E,\delta) \phi(E,t) , \qquad (1)$$

where $\phi(E, t)$ is the neutrino flux (use units GeV⁻¹ cm⁻² s⁻¹), δ is the declination of the source, and $t_{\rm obs}$ is the observation time.

1) Declination dependence of $A_{ m eff}$

Use the following effective areas:

Figure 1: Effective area (for $\nu_{\mu} + \bar{\nu}_{\mu}$) as a function of neutrino energy for the event selection "GFU Gold". Taken from Ref. [1]

a) Why does it make sense to show A_{eff} for different declination bands? What kind of effect makes $A_{\text{eff}}(E)$ decline at high energies for large values of (positive) δ ?

b) Assume now that the sources are isotropically distributed and identical. Which of the shown declination bands would dominate the number of neutrinos observed for IceCube?

Hint: Multiply the solid angle (proportional to the number of sources) with $A_{\text{eff}}(1 \text{ PeV})$ to compare the relative contributions.

2) Diffuse flux sensitivity of IceCube

Estimate the diffuse flux sensitivity limit of IceCube after ten years of operation. Use A_{eff} from the declination band $0^{\circ} \leq \delta < 30^{\circ}$ and assume a (constant in time) power law neutrino flux $\phi(E) = K_0 \cdot E^{-2}$ with a normalization factor K_0 in the background-free regime.¹

Hint: Compute K_0 by setting $N \stackrel{!}{=} 2.44$ (90% CL Feldman-Cousins limit for no background, see Tab. 12 in Ref. [2]). Re-write Eq. (1) first into an integral over $x \equiv \log_{10} E$. You may then numerically integrate it, by using the approximated parameterization $A_{\text{eff}} = 10^{(3.6 \cdot (x-4.5)^{0.3}-2)} \text{m}^2$ ($x \ge 4.5$) or by reading out the curve from the figure.

3) Differential limit

The quantity $E/(A_{\text{eff}}(E) t_{\text{obs}} \ln 10)$ is sometimes shown as a "differential limit".² How can this quantity be interpreted?

Hint: Identify this combination in the previous calculation after re-writing the integral. Show the differential limit together with the sensitivity limit in one figure.

4) Stacking analysis for GRBs

a) Compute a sensitivity limit, assuming that N_{GRB} identical GRBs at equal redshift have been stacked (looked at) and no neutrinos have been seen, in the background-free regime.

Hint: Here one uses a fluence (time-integrated flux) per GRB $\mathcal{F} = \tilde{K}_0 \cdot E^{-2}$ (use units GeV⁻¹ cm⁻²). The computation becomes similar to 2), solving for \tilde{K}_0 , but the time integral in Eq. (1) is not necessary. Do not forget to sum the event rate over N_{GRB} !

b) Convert this fluence limit per GRB into a quasi-diffuse flux limit from all GRBs, assuming that there are $\dot{N}_{\rm tot} \simeq 1000 \,{\rm yr}^{-1}$ observable GRBs per year.³ Compare to current GRB stacking limits, e.g. Fig. 7 in Ref. [3]. How does the result scale with $N_{\rm GRB}$? Why is the background-free assumption relatively well justified here?

References

- [1] ICECUBE collaboration, *IceCat-1: the IceCube Event Catalog of Alert Tracks*, 2304.01174.
- [2] G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021].
- [3] ICECUBE collaboration, Extending the search for muon neutrinos coincident with gamma-ray bursts in IceCube data, Astrophys. J. 843 (2017) 112 [1702.06868].

¹Note that for realistic applications, the appriate effective area has to be taken!

²The pre-factor is sometimes a matter of definition/choice/purpose.

³To obtain a flux per steradian, divide the diffuse flux by the total solid angle 4π : $\phi_{\rm QD} = \frac{1}{4\pi} N_{\rm tot} \mathcal{F}$.