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Surface operators are 2d objects that arise in a variety of contexts, e.g.

• In 3d they appear as boundaries and interfaces
• In 4d they appear as Dirac strings, coupled 2d-4d systems, vortices,

entanglement entropy, and more

The focus of my talk will be their role in the 6d N = (2, 0) SCFTs, which
are famous examples of nonlagrangian theories.

I will discuss how

• Surface operators in these theories are fundamental observables
analogous to Wilson lines

• We have powerful nonperturbative tools to study them, which also
apply to other theories
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The free theory

The simplest 6d N = (2, 0) theory is the theory of a free tensor multiplet
in 6d. It consists of

• a two-form potential Bµν with self-dual field strength dB = ∗dB.
• a scalar field Φi transforming under SO(5)
• some fermions

Writing a lagrangian is difficult because of the self-duality constraint.
Nevertheless the EOMs are known.

We can construct a surface operator

VΣ,n = exp
∫

Σ
B

+ niΦi volΣ

V is invariant under gauge transformations B → B + dΛ
⇒ analogous to a Wilson line

Both B and Φ have dimension 2.
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The interacting theories

They are predicted by string/M-theory considerations, e.g. they describe
the low-energy dynamics of N coincident M5-branes

• No known lagrangian description
• Maximal supersymmetry and maximal dimension
• No exactly marginal deformation (“strongly coupled”)
• Obey an ADE classification
• Underpin the construction of many theories in lower dimensions (e.g.

class S) and shed light on dualities
• M2-branes ending on M5-branes give rise to surface operators VΣ,n
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These theories challenge the standard perturbative approach to QFT. In
the absence of a lagrangian, we may ask

• Do they really exist?
• How do we even define them?
• How do we perform calculations?

To answer these questions we need new tools.
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My approach to this problem: exploit the analogy between surface
operators and Wilson lines in N = 4 SYM.

Since Wilson lines have been so useful in understanding N = 4 SYM, it
suggests that surface operators are an excellent starting point to study
the (2,0) theories.

Wilson lines:

• capture the quark-antiquark potential
• labelled by reps Λ of the gauge group
• dual to fundamental strings
• Feynman diagrams
• supersymmetric localization
• bootstrap
• . . .
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Plan for the talk

The (generalised) string potential

Vertex operator algebra

Analytical conformal bootstrap at large N

Conclusion
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The (generalised) string
potential



Recall that in any gauge theory, a fundamental observable is the
quark-antiquark potential calculated by a pair of Wilson lines

⟨W (0)W (R)⟩ = exp (−U(R)T ) , U(R) = U0
R

R

W (0) W (R)

Figure 1: Parallel Wilson lines
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For surface operators we can take 2 parallel planes to get the string
potential

⟨V (0)V (R)⟩ = exp
(

−U0Area
R2

)

U0(N, Λ) can be calculated in the free theory and at large N using
holography [Maldacena, 1998, Drukker and Trépanier, 2022]
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The crease

We can define a generalised potential U(ϕ, θ, N, Λ) which gives us more
parameters to play with.

Consider the crease

φ

e.g. for the free theory

Vϕ,θ = exp
[∫

r<0
drds(B12 + Φ1)

+
∫

r>0
drds cos ϕB12 + sin ϕB13 + cos θΦ1 + sin θΦ2

]
The expectation value must be extensive in the length L, so by
dimensional analysis is proportional to L/ϵ, ϵ a UV cutoff. This is
removed by renormalisation. 10



To define a finite quantity, take the conformal transformation to a
compact surface (with the topology of a sphere).

The change in topology gives rise to a conformal anomaly, which appears
as a log ϵ divergence.

Example: the sphere in the free theory

⟨VS2 ⟩ =
〈

exp
∫

S2
B + Φ1 volS2

〉
= 1 + 1

16π2

∫
S2

cos ududv cos u′du′dv ′

1 − cos u cos u′ cos (v − v ′) − sin u sin u′ + ϵ2/2R2

+ . . .

Using spherical symmetry this reduces to

4π · 2π

16π2

π/2∫
−π/2

cos udu
1 − sin u + ϵ2/2R2 = − log

(
ϵ

2R

)
+ O(ϵ2) .
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The appearance of the log ϵ divergence indicates that the regularisation
does not preserve conformal symmetry: it’s a conformal anomaly.

The anomaly does not depend on ϕ, θ, so we can obtain a finite quantity
by taking a difference

log ⟨Vϕ,θ⟩ − log ⟨VS2⟩ = 2πU(ϕ, θ, N, Λ)

U can be calculated explicitly at N = 1 and N ≫ 1, e.g.

U(ϕ, θ, N = 1) = 1
2π

log cos ϕ

2 + cos ϕ − cos θ

8π cos2(ϕ/2)
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φIn [Drukker and Trépanier, 2022], we find that

• U is interpreted as the potential density on AdS2 × S4

• In the limit ϕ → π, θ → 0, we recover U0

• When ϕ, θ ≪ 1, U can be calculated using defect CFT techniques
for any N, Λ

• When ϕ = θ, the crease is BPS and we conjecture that

U(ϕ, ϕ, N, Λ) = d(N, Λ)
π

log cos(ϕ/2)

with d(N, Λ) an anomaly coefficient [Chalabi et al., 2020].

The quantity U can be defined for any surface operator. In upcoming
work I will discuss the appearance of U in the critical O(N) model.
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Vertex operator algebra



In lagrangian theories, one can sometimes calculate observables exactly
using supersymmetric localization. In the (2,0) theories, we can the VOA
construction of [Beem et al., 2015] instead.

Consider the surface operator V defined over a plane (1/2 BPS). I will
show how to calculate exact OPE coefficients a∆,ℓ,R appearing in the
1-point function of certain BPS bulk operators O with V

⟨O∆,ℓ,R(x , u, v)V ⟩ = a∆,ℓ,R
(u · n)R(x⊥ · v)ℓ

|x⊥|∆
.

u, v encode polarisations.
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Review of the VOA

The (2,0) theory contains a set of 1/2 BPS operators Φk with
k = 2, . . . , N. Φ2 is the superprimary of the stress tensor multiplet.

The 3-point functions are

⟨Φk1(x1, u1)Φk2(x2, u2)Φk3(x3, u3)⟩

= λk1k2k3

(
−2u1 · u2

x4
12

) k123
2

(
−2u1 · u3

x4
13

) k132
2

(
−2u2 · u3

x4
23

) k231
2

Taking xi = (zi , z̄i , 0, . . . ) and choosing ui = z̄i we get

⟨Φk1(z1, z̄1; z̄1)Φk2(z2, z̄2; z̄2)Φk3(z3, z̄3; z̄3)⟩ = λk1k2k3

(z12)k123(z13)k132(z23)k231
.

This is a 3-point function of primary operators in a 2d CFT.
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The deeper reason for the appearance of a 2d CFT structure is that the
choice x = (z , z̄ , . . . ) and u = z̄ defines a holomorphic twist of the (2,0)
theory.

Concretely, Φk(z , z̄ , z̄) sit in the cohomology of a supercharge Q, i.e.
QΦ = 0. z̄ translations are Q-exact, so Φ(z , z̄ , z̄) = Φ(z , 0, 0) + Q(. . . )
and the dependence on z̄ drops out of the correlators.

Beem, Rastelli, van Rees conjecture that correlators of
holomorphically-twisted operators obey the structure of the WN algebra,
with

Φk(z , z̄ , z̄) 7→ Wk(z)

Wk(z) are the generators of the WN algebra.

This means that we can use tools from 2d CFTs to calculate the CFT
data of a class of BPS operators in the 6d theory!
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Example: 4-point functions of stress tensors

We consider the 4-point function

⟨T (0)T (z)T (1)T (∞)⟩

This is a meromorphic function, so is uniquely determined by its poles
in z and their residues. Using the OPE

T (z)T (w) = c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) + . . .

we can obtain all the poles at z = 0

c/2
z4 ⟨T (1)T (∞)⟩ + 2

z2 ⟨T (0)T (1)T (∞)⟩ + 1
z ⟨∂T (0)T (1)T (∞)⟩

and similarly at z = 1, z = ∞. We find

⟨T (0)T (z)T (1)T (∞)⟩
⟨T (0)T (z)⟩⟨T (z)T (1)⟩ = 1+z4+

( z
z − 1

)4
+ 8

c

( z
z − 1

)2
(z2−z+1)
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Including surface operators

Surface operators fit naturally in the VOA, since QV = 0 for V a 1/2
BPS plane orthogonal to the z , z̄ plane.

They are identified with modules |VΛ⟩ of the WN algebras

V 7→ VΛ(0)

These modules were studied in [Fateev and Lukyanov, 1988], they
showed that

T (z)VΛ(0) ∼ ∆(N, Λ)
z2 VΛ(0) + 2

z ∂VΛ(0) + . . .

where

∆(N, Λ) = −1
2(Λ, Λ) − 2(ρ, Λ)
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Let’s obtain some OPE coefficients. The 1-point function is

⟨Φ2V ⟩ 7→
〈
V̄Λ(∞)T (z)VΛ(0)

〉
= ∆(N, Λ)

z2 .

So

aΦ2 = ∆(N, Λ)

The predicted OPE coefficient is −d(N, Λ) [Chalabi et al., 2020], and
indeed −d(N, Λ) = ∆(N, Λ). This is a direct confirmation of their result!
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We can do more. Consider the 2-point function

⟨Φ2Φ2VΛ⟩ 7→
〈
V̄Λ(∞)T (z)T (1)VΛ(0)

〉
= 1 + ∆(N, Λ)2

c 2Z 2 + ∆(N, Λ)
c 4Z , Z ≡ (z − 1)2

z .

We can read the OPE coefficients from 2 conformal blocks
decompositions, the “bulk” and “defect” channels.

In the bulk channel we find e.g.

(aλ)D[2,0] = 4∆(N, Λ)
c , (aλ)D[4,0] = α0 , (aλ)B[2,0]ℓ=2n−2 = −αn .

αn = (2n + 2)!(2n + 3)!
(2n + 3)!(4n + 5)

(
(2n + 5) ∆(N, Λ)2

c + 1
n + 1

∆(N, Λ)
c

)
from which we can extract the coefficients a.
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• Exact results in a nonlagrangian theory!
• Strong indication that these theories are meaningful for any N
• The chiral algebra also contains much more information than what

we analysed
• Confirmation of the classification of surface operators by Λ
• What about more complicated BPS observables? (e.g. the BPS

potential)
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Analytical conformal bootstrap
at large N



The bootstrap approach to defects is well-known. We consider the
2-point function

⟨O2(x1, u1)O2(x2, u2)V ⟩ = |u⊥
1 |2|u⊥

2 |2

|x⊥
1 |4|x⊥

2 |4
F(z , z̄ , ω)

z , z̄ , ω are conformal cross-ratios.

F admits two conformal blocks decomposition, which is a crossing
symmetry constraint

O2 O2 = O2 O2

F =
∑
Ôk

(b2)k Ĝk(z , z̄ , ω) =
∑
Ol

(aλ)lGl(z , z̄ , ω)

Solving these constraints is hard.

22



At large N we can use the supersymmetric inversion formula [Barrat,
Gimenez-Grau, Liendo 2022]

F ∼
∫

Disc

  ∼ ×

Adapting this strategy we find

F(z, z̄, ω) = |z − ω|2|z − ω−1|2

|z − 1|4 F (z, z̄) + z̄(z − ω)(z − ω−1)(ω − 1)2

ω(z − z̄)(z − z̄−1)(z̄ − 1)2 ζ(z) + c.c.

where F , ζ are given by

ζ(z) = z2

(1 − z)4 + a2
2 + a2λ222

z
(1 − z)2 ,

F (z , z̄) = 0 + a2
2 + a2λ222

(
zz̄

(1 − zz̄)6
[
2

(
1 + zz̄ + (zz̄)2) (

1 + 18zz̄ + (zz̄)2)
− (z + z̄) (1 + zz̄)

(
1 + 28zz̄ + (zz̄)2)]

+6(zz̄)2 log zz̄
(1 − zz̄)7

[
(1 + zz̄)

(
3 + 4zz̄ + 3(zz̄)2)

− 2 (z + z̄) (1 + 3zz̄ + (zz̄)2)
])

+ . . .

along with the dCFT data b2, aλ and anomalous dimensions.
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• ζ(z) agrees with the result from the VOA
• We obtained the superconformal blocks and solved the

superconformal Ward identities
• The setup is surprinsingly nice: the conformal blocks are (relatively)

simple, and we can do all the computations explicitly
• Is there a systematic approach to calculating CFT data at large N?
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Conclusion



Conclusion

• This work was motivated by the analogy betwen surface operators
and Wilson lines.
Does this extend also to surface operators in other theories?
What is the meaning of the string potential in 4d gauge theories?

• We have (at least) two powerful nonperturbative methods to study
surface operators in the (2,0) theories:

1. VOA
2. Analytical conformal bootstrap

In principle both techniques apply also to 4d defects in (2,0)
theories, and surface operators in 4d N = 2 theories.

• Can we use our better understanding of 6d (2,0) theories to learn
something about theories in lower dimensions?
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