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Motivation

• Unitarity of the S-matrix has been an immensely important
concept in the study of scattering amplitudes.

• For instance, factorization on poles pi → 0 leading to the soft
bootstrap program.

• Unitarity of the S-matrix does not predict what happens with
tree-level amplitudes (or loop integrands) on UV poles when
the external momenta (or loop momenta) go to infinity

• Is there a notion of unitarity at infinity?
• On-shell diagrams are natural objects to consider (gauge

invariance, factorization manifest)



Motivation

• We will study on-shell diagrams in mainly N = 3 and show
that there is a ”factorization” property for diagrams with
poles at infinity

• Important to note: the amplitudes themselves don’t have
poles at infinity, but the diagrams do.

• For N < 3 these poles also start to show up in the amplitudes.



Scattering amplitudes
Motivation

From perspective of experimentalists:
• Amplitudes are highly non-local objects.
• They measure incoming and outgoing states at infinity

An



Scattering amplitudes
Motivation

From theorists perspective
• Amplitudes are highly non-local objects.
• Traditionally described through very local processes, e.g.

Feynman diagrams

An



Scattering amplitudes
Motivation

• Amplitudes are highly non-local objects.
• What else can we fill this blob with?

?



Scattering amplitudes
Color-ordering

We will focus on Yang-Mills where kinematic- and color
information decompose in the amplitude.

Atree
n =

∑
σ∈Sn/Zn

Tr[Taσ(1) · · ·Taσ(n) ]Atree
n (σ(1), . . . , σ(n)). (1)

DDM Basis, from Jacobi identities

Atree
n =

∑
σ∈Sn−2

f a1aσ(2)b1f b1aσ(2)b2 · · · f bn−3aσ(n−2)an An(1, σ,n). (2)

⇒ Only need to calculate color-ordered amplitudes.



Scattering amplitudes
sYM

• In the remaining we will work with super-symmetric
Yang-Mills amplitudes

• Characterized by N : number of super-symmetry generators
QA,Q†

A.
• We will work mainly with N = 2, 3, 4.



Scattering amplitudes
Spinor-Helicity

• We are going to focus on massless spin 1 particles
• All data needed about particles is helicities ± and momenta

pµ
i .

• We then take

d = 4, pµ
i piµ = 0,

∑
i

pi = 0 (3)

• And define usual Pauli matrices

σµ

αβ̇
= (1αβ̇, σ

1
αβ̇

, σ2
αβ̇

, σ3
αβ̇

)

(σ̄µ)α̇β = (1α̇β,−(σ1)α̇β,−(σ2)α̇β,−(σ3)α̇β)
(4)



Scattering amplitudes
Spinor-Helicity

• We can use this to define momentum bi-spinors from the
four-momenta pµ

pαβ̇ ≡ pµσµ

αβ̇
, pα̇β ≡ pµ(σµ)α̇β (5)

• Determinant of this is 0 from the massless condition
• pαβ̇ has rank 1 ⇒ write as product of two 2-spinors λα, λ̃β̇



Scattering amplitudes
Spinor-Helicity

• We can use the bra-ket notation to define spinor (braket)
products

pαβ̇ = λαλ̃β̇ ≡ |p〉α [p|β̇ (6)

as well as

〈kp〉 ≡ 〈k|α|p〉α, and [kp] ≡ [k|α̇|p]α̇ (7)



On-shell recursion

• Locality (i.e. point interactions) dictates: the only poles are
propagators

1
P2 , with P =

∑
k

pk (8)

• Unitarity of the S-matrix forces the amplitude to factorize on
this pole,

A −−−→
P2=0

AL
1

P2 AR (9)

• This is true for IR poles, P2 → 0, no such structure is known
for UV poles, P2 → ∞.



On-shell recursion
BCFW

• This is known as on-shell recursion, i.e. building higher point
amplitude from lower point ones.

• An explicit example of this is BCFW (Britto, Cachazo, Feng,
Witten) recursion.

• Perform complext shift

λi → λi − zλj

λ̃j → λ̃j + zλ̃i
(10)



On-shell recursion
BCFW

• Shift conserves momentum.
• Consider the holomorphic function Âz

z , i.e. the shifted
amplitude.

• If amplitude behaves nicely for z → ∞ we can use Cauchy’s
theorem to relate

An(z = 0) = −
∑

k
Resz=zk

[
Ân(z)

z

]
(11)



On-shell recursion
BCFW

• On each zI pole some propagator P̂2
I =

(∑
k∈I p̂k

)2 goes on
shell.

• On each pole the amplitude factorizes
• Example, n-point MHV amplitude, under a 1,n shift

An

n− 2 n− 1

n

12

−→

n− 2n− 1

n̂

2

1̂

P̂1n

Â3 Ân−1 . (12)



On-shell recursion
BCFW

• Recursively built amplitude from lower points.
• Keep recursing until everything is built from fundamental

lowest point amplitudes.



Unitarity
1-loop amplitude

• Unitarity allow us to write the amplitude as a linear
combination of basis integrals with gauge-invariant on-shell
prefactors

A1-loop
n =

∑
k

ak

∫
dI�k +

0 in N=4︷ ︸︸ ︷∑
k

bk

∫
dI4k +

∑
k

ck

∫
dI>©<

k +R︸︷︷︸
0 in N=1,2

• Coefficients determined using Unitarity cuts
• One-loop analogue of tree level unitarity



Unitarity
1-loop amplitude

• When maximal number of propagators are cut, we have
maximal cuts

• Cutting each propagator puts it on shell `2
i = 0

• For instance, we have the Quadruple cut:

ℓ1

ℓ2

ℓ3

ℓ4

. (13)

• For each helicity configuration the coefficient then is summed
over solutions to cut conditions

ak ∼
∑
sol

A1 × A2 × A3 × A4 (14)



On-Shell diagrams

• Iterate both types of cuts until all propagators are cut
• Remaining object is build entirely of fundamental amplitudes
• These are on-shell diagrams

1

2

3

4

5 (15)



On-shell diagrams
Three-point amplitudes

The simplest amplitudes we can construct are three point. For
N = 4

1

2 3

=
δ4(P )δ8(Q)

⟨12⟩⟨23⟩⟨31⟩
,

1

2 3

=
δ4(P )δ4(Q̃)

[12][23][31]

where,

P ≡ λ · λ̃ = λ1λ̃1 + λ2λ̃2 + λ3λ̃3, Q ≡ λ · η̃ = λ1η̃1 + λ2η̃2 + λ3η̃3,

Q̃ ≡ [12]η̃3 + [23]η̃1 + [31]η̃2

Φ(η̃) = g+ + η̃I g̃I +
1
2!
η̃I η̃J φIJ

+
1
3!
εIJKLη̃

I η̃J η̃K g̃L +
1
4!
εIJKLη̃

I η̃J η̃K η̃L g−.



On-shell diagrams
Three-point amplitudes

The simplest amplitudes we can construct are three point. For any
N

1+

2− 3−

=
⟨23⟩4−N δ4(P )δ2N (Q)

⟨12⟩⟨23⟩⟨31⟩
,

1−

2+ 3+

=
[23]4−N δ4(P )δN (Q̃)

[12][23][31]

Since 0 = p2
3 = (p1 + p2)

2 = 2p1 · p2 = 〈12〉 [21], these obey
constrained kinematics,

λ̃1 ∼ λ̃2 ∼ λ̃3, λ1 ∼ λ2 ∼ λ3 (16)



On-shell diagrams
Three-point amplitudes

• On-shell diagrams are build by gluing these fundamental
three-point vertices together.

• All vertices satisfy momentum conservation.
• Every propagator (internal line) is on-shell, p2 = 0.

1

2

3

4

5 =
∏

k

∫
dN η̃k

∫
d2λk d2λ̃k

GL(1)

∏
j

A(j)
3


(17)



On-shell diagrams
4 point amplitude

• Simplest example

3

1

2

4

ℓ1

ℓ2

ℓ3

ℓ4

`1 =
〈23〉
〈13〉

λ1λ̃2,

`2 =
〈12〉
〈13〉

λ3λ̃2,

`3 =
〈14〉
〈13〉

λ3λ̃4,

`4 =
〈34〉
〈13〉

λ1λ̃4.

• Gluing is done by integrating over cut conditions

Ω =

∫
d4η̃1 . . . d4η̃4

∫
d2λ`1d2λ̃`1

GL(1)
. . .

d2λ`4d2λ̃`4

GL(1)

×

{
A3(1, `1, `4)A3(2, `1, `2)A3(3, `2, `3)A3(4, `3, `4)

}

=
δ4(P)δ8(Q)

〈12〉〈23〉〈34〉〈41〉

(18)



On-shell diagrams
4 point amplitude

Ω =
δ4(P)δ8(Q)

〈12〉〈23〉〈34〉〈41〉
(19)

• All poles in the amplitude correspond to sending one `i → 0.
• One pole is not present in the amplitude, 〈13〉.
• This is the pole at infinite momentum `i → ∞, or the UV

pole.



On-shell diagrams
4 point amplitude

3

1

2

4

ℓ1

ℓ2

ℓ3

ℓ4

`1 =
〈23〉
〈13〉

λ1λ̃2,

`2 =
〈12〉
〈13〉

λ3λ̃2,

`3 =
〈14〉
〈13〉

λ3λ̃4,

`4 =
〈34〉
〈13〉

λ1λ̃4.

(20)
For example, sending 〈12〉 = 0 implies `2 = 0 and we get

3

1

2

4

=
δ(〈12〉)δ4(P)δ8(Q)

〈23〉〈34〉〈41〉
, (21)



On-shell diagrams
Higher point amplitudes

• Higher point diagrams correspond to BCFW terms
• For MHV amplitudes we obtain 1 diagram at all points

3

4

5

1

2

4 point amplitude

BCWF bridge
(shifted legs)

3 point amplitude



On-shell diagrams
Identity moves

• The following moves do not change the on shell function for
the diagram – are identity moves

Square move:

3

1

2

4

=

3

1

2

4

(22)

Merge-expand:

3

1

2

4

=

3

1

2

4

=

2 3

41

(23)



Dual Formulation

• Consider momentum conservation:

δ4(P) = δ4(λ · λ̃) = δ4(λ1λ̃1 + ...+ λnλ̃n) (24)

• Introduce a k-plane in n-dimensions represented by a
(k × n)−matrix (modded out by GL(k) since such row
operations leave the k-plane invariant).

• This space is denoted by G(k,n), the Grassmannian.
• A point in this space is represented by a (k × n) matrix, which

we refer to as the C -matrix.
• Linearized momentum conservation condition

δ(C · Z) = δ((n−k)×2)(C⊥ · λ)δ(k×2)(C · λ̃)δ(k×N )(C · η̃)
(25)



Dual Formulation
Interpretation

• Geometrically we can visualize this in ”particle space”

λ2-plane

λ̃2-plane

C

(26)



Dual Formulation
Interpretation

• What is the connection to on-shell diagrams?
• They parameterize C in a certain way



Dual Formulation
Interpretation

• Introduce orientation for each diagram by assigning arrows to
all edges where

• Black vertices have two incoming and one outgoing arrow.
• White vertices have one incoming and two outgoing arrows.

• Then assign edge variables to all edges, fixing in each vertex
one variable to 1.

• The C matrix is then given by

Cαa =
∑
Γα→a

∏
j
αj (27)



Dual Formulation
Interpretation

• The on-shell function associated with the an on-shell diagram
in N = 4 SYM theory is given by

Ω =

∫ ∏
i

dαi
αi

δ(C · Z) (28)

• where the δ-functions let us determine the α’s.



Dual Formulation

As an example, take

3

1

2

4

α1

α2

α3

α4

⇒ C =

(
1 α1 0 α4
0 α2 1 α3

)
,C⊥ =

(
−α1 1 −α2 0
−α4 0 −α3 1

)
.

which e.g. leads to

δ4(C⊥ · λ) = δ2(−α1λ1 + λ2 − α3λ3)δ
2(−α4λ1 − α2λ3 + λ4).

(29)
We can use this to solve for α’s.



Dual Formulation

Explicitly

Ω =
δ8 (Q) δ4 (P)

α1α2α3α4〈13〉4 δ

(
α2 −

〈12〉
〈13〉

)
δ

(
α1 −

〈23〉
〈13〉

)
× δ

(
α3 −

〈14〉
〈13〉

)
δ

(
α4 −

〈43〉
〈13〉

)
=

δ8 (Q) δ4 (P)

〈12〉〈23〉〈34〉〈41〉

(30)



Dual Formulation

• So on-shell diagrams can be used to find the tree level
amplitude, or the maximal cut of a loop integrand.



Dual Formulation

• With the basics introduced, we can focus on the pole
structure.

• Importantly the UV structure will not correspond to that of
the amplitudes themselves.

• But seeing how the on-shell diagrams behave can give a clue
on what directions to look in for the amplitudes.



Dual Formulation
Interpretation

• Poles in Ω correspond to sending edges to 0 or ∞
• For instance for 6-point MHV,

Ω =
δ8 (Q) δ4 (P)

〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉
(31)

3

1

2

4

6

α1

α2
α3

α4

α5

α6

α7

α8

5 −−−→
α7=0

3

1

2

4

6

α1

α2
α3

α4

α5

α6
5.

(32)
here α7 = 〈56〉

〈46〉



Dual Formulation
N 6= 4

• This is simple enough. What about N 6= 4?
• We have to modify

Ω =

∫ ∏
i

dαi
αi

δ(C · Z)JN−4 (33)

• The Jacobian J is given by

J = 1 +
∑

i
fi +

∑
disjoint
pairs i,j

fifj +
∑

disjoint
pairs i,j,k

fifjfk + · · ·
(34)

with fi is a clockwise-oriented product of edge-variables in
closed cycles, and the sums are over disjoint collections of
these closed cycles.



Dual Formulation
N 6= 4

Example:

3

1

2

4

α1

α2

α3

α4

C =

(
α2α3α4δ 1 α2δ 0

α4δ 0 α1α2α3δ 1

)
(35)

The δ that appears here corresponds to a geometric series, which
can be written as:

δ =

∞∑
k=0

(α1α2α3α4)
k =

1
1 − α1α2α3α4

(36)



Dual Formulation
N 6= 4

Example:
3

1

2

4

α1

α2

α3

α4

(37)

The Jacobian from the internal cycle is

J = 1 − α1α2α3α4 =
〈13〉〈24〉
〈12〉〈34〉

(38)

The on-shell form is then given by

Ω =
〈24〉4−N δ4(P)δ2N (Q)

〈12〉〈23〉〈34〉〈41〉︸ ︷︷ ︸
Ωbare

(
〈12〉〈34〉
〈13〉〈24〉

)4−N
(39)



Dual Formulation
N 6= 4

3

1

2

4

α1

α2

α3

α4

α1 =
〈23〉
〈13〉

, α2 =
〈13〉
〈12〉

, α3 =
〈14〉
〈13〉

, α4 =
〈13〉
〈34〉

.

• Let us study this result

Ω =
〈24〉4−N δ4(P)δ2N (Q)

〈12〉〈23〉〈34〉〈41〉︸ ︷︷ ︸
Ωbare

(
〈12〉〈34〉
〈13〉〈24〉

)4−N
(40)

• Deletes poles that stem from edges that are not removable
• Introduces pole at infinity 〈13〉.



Dual Formulation
N 6= 4

• For now, focus on N = 3 ⇒ Simple Poles
• Important point: For N=4 SYM theory each on-shell diagram

directly corresponds to a cut of the loop integrand
• For N<4 SYM one has to sum over all internal configurations

for fixed external helicities



Dual Formulation
N 6= 4

• For N<4 SYM one has to sum over all internal configurations
for fixed external helicities,

• Example: For legs 2, 4 incoming there are two possible
internal orientations,

3+

1+

2−

4−

ℓ1

ℓ2

ℓ3

ℓ4

=

3

1

2

4

α1

α2

α3

α4

+

3

1

2

4

α1

α2

α3

α4

.

(41)



Dual Formulation
N 6= 4

• For N = 3 we get,

Cut A4(1+2−3+4−) = 〈12〉〈23〉 δ4(P)δ6(Q)

〈12〉〈23〉〈34〉〈41〉〈13〉
+

〈23〉〈14〉 δ4(P)δ6(Q)

〈12〉〈23〉〈34〉〈41〉〈13〉

=
〈24〉 δ4(P)δ6(Q)

〈12〉〈23〉〈34〉〈41〉
.

So
Cut

[
AN=3] = Cut

[
AN=4]

ONS
[
AN=3] 6= ONS

[
AN=4] (42)

where ONS: On-shell diagram



Dual Formulation
N 6= 4

• For now, focus on on-shell diagrams in N = 3 ⇒ Simple Poles
• What happens if we sit on the pole at infinity?



Dual Formulation
N 6= 4

3

1

2

4

α1

α2

α3

α4

=
δ4(P)δ6(Q)

〈23〉〈14〉〈13〉
(43)

Res(Ω)〈13〉=0 =
δ4(P)δ6(Q)δ(〈13〉)

〈23〉〈14〉
=

2

1

3

4

≡ ΩUV



Dual Formulation
N 6= 4

Video showing schematics:



Dual Formulation

Other example

3

1

2

4

5

α1

α2
α3

α4

α5

α6

α1 =
〈13〉
〈23〉

, α2 =
〈12〉
〈13〉

, α3 =
〈45〉
〈35〉

,

α4 =
〈35〉
〈34〉

, α5 =
〈13〉
〈35〉

, α6 =
〈35〉
〈15〉

.

(44)
The on-shell function is then equal to

Ω =
δ4(P)δ6(Q)

〈12〉〈45〉〈13〉〈35〉
(45)



Dual Formulation
N 6= 4

Blow up each loop individually

3

1

2

4

5

α1

α2
α3

α4

α5

α6

Ω =
δ4(P)δ6(Q)

〈12〉〈45〉〈13〉〈35〉
(46)

We know how the box blows up already



Dual Formulation
N 6= 4

The pentagon on the other hand,

3

1

2

D

F

−→

D

2

1

F

3

(47)

where the 4-point vertex can be further expanded as a chain of
3-point vertices.



Dual Formulation
N 6= 4

Video showing schematics:



Dual Formulation
N 6= 4

Gluing back with the right box we get a pentagon diagram,

3

1

2

4

5

D

F

−→

3

2

1

4

5F

D

(48)
where

Ω =
δ4(P)δ6(Q)

〈12〉〈45〉〈13〉〈35〉
−→ ΩUV =

δ4(P)δ6(Q)δ(〈13〉)
〈12〉〈45〉〈35〉

(49)



Dual Formulation
N 6= 4

This should not be surprising since the pentagon was really just a
box

3

1

2

D

F

=

3

1

2 D

F

(50)

which we already knew how to do.



Dual Formulation
N 6= 4

• Let us generalize this to higher points
• Sufficient in planar diagrams to treat n-gons
• These are secretly just boxes!

i

j

i− 1

1

n

j + 1

j − 1

i+ 1

=

i

j

j + 1

i+ 1

i− 1

j − 1

1

n

(51)



Dual Formulation
N 6= 4

The residue is then simple to generalize

i

j

i− 1

1

n

j + 1

j − 1

i+ 1

−→

jn

i

1

i− 1

i+ 1

j − 1
j + 1

(52)



Dual Formulation
N 6= 4

• These all are MHV diagram with only two black vertices.
• For NkMHV diagrams we have k − 2 black vertices.
• The expressions are a lot more complicated, but the result is

similar
• Find result for n-gon then attach these to remaining diagram.



Dual Formulation
N 6= 4

On UV pole on-shell diagrams behaves as

1

2

3

4

k

k + 1

2k

−→

2k

2k − 3
22k − 1

3

1

4

2k − 2

(53)



Larger diagrams
N 6= 4

Take three-loop six-point NMHV leading singularity diagram

1 2

3

45

6

α5

α1 α7 α8

α2

α3

α6α4

=
δ6(Q)δ4(P)δ([56]η̃1+[61]η̃5+[15]η̃6)

〈34〉〈2|3+4|1]〈3|5+6|1]〈2|1+6|5][56]

• Hexagon pole at 〈2|3+4|1] = 0
• Box pole at 〈3|5+6|1]



Larger diagrams
N 6= 4

• Contracting the Hexagon into a tree and then attaching to
the remaining diagram

1 2

3

45

6

α5

α1 α7 α8

α2

α3

α6α4

→

1

6

5 4

2

3

,

• Notice the change in orientation – this is a general feature
since for larger diagrams this gives non planar diagram



Larger diagrams
N 6= 4

• Let us consider a more intricate example – the top
dimensional cell of G+(3, 6)

• This can be obtained by attaching a BCFW bridge to the
previous diagram: ̂̃

λ1 = λ̃1 + α1λ̃2 and λ̂2 = λ2 − α1λ1

• On shell conditions leave one parameter unfixed
1 2

3

45

6

α5

α1

α7 α8

α2

α3

α6α4

α9

=

∫
dα1 〈4|1̂+5|6]δ(Ξ)

α1s1̂56〈2̂3〉〈34〉〈2̂|3+4|5]〈4|5+6|1̂][1̂6][56]︸ ︷︷ ︸
Ωbare

×
s1̂56〈2̂3〉〈4|5+6|1̂][1̂6]

〈2̂|5+6|1̂]〈3|5+6|1̂](〈4|1̂+5|6])︸ ︷︷ ︸
J−1

(54)



GRT
N 6= 4

For N = 4 the pole structure can be illustrated as follows

1 2

3

45

6

α5

α9

α2

α3

α6α4

α1

α7 α8
6

5

1 2

4

3

1 1

1

11

2 2

2

22

3 3

3

3
3

4 4

4

4

4

5 5

5

5

5

6 6

6

66
Ω1

Ω2

Ω3 Ω4

Ω5

Ω6 (55)



GRT
N 6= 4

• Where, through the Global Residue Theorem (GRT)
6∑

i=1
Ωi = 0, with Ω1 =

δ4(P)δ8(Q) δ([34]η̃5+[45]η̃3+[53]η̃4)

s345[34][45]〈16〉〈12〉〈2|3+4|5]〈6|1+2|3]

• This is directly linked to the six-point NMHV tree-level
amplitude

Atree
6,3 = Ω1 +Ω3 +Ω5 = −Ω2 − Ω4 − Ω6 (56)



GRT
N 6= 4

For our N = 3 example we have a new GRT, where we also
explicitly see the non planar structure
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GRT
N 6= 4

Let us highlight the Hexagon UV pole which gives the non-planar
diagram:
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Dual Formulation
N 6= 4

Video showing schematics:



General N
N 6= 4

More general problem

1

2
ℓ3

ℓ4

Ω2

(59)

UV pole of this is obtained by acting on the collapsed diagram
with a differential operator O



General N
N 6= 4

ΩUV = ON ⊗

1

2

ℓ3

ℓ4

Ω2 (60)

with

ON =
1

(3−N )!

(
〈2`3〉[2`3]

〈12〉[1`3]

〈
λ2

d
dλ`3

〉)3−N
(61)



General N
N 6= 4

The procedure is as follows
• Calculate the bare on-shell function of the lower-loop on-shell

diagram obtained by diagrammatic rules
• Crucially this relies on leaving the integration over an unfixed

leg λ`3 such that one can act with derivative.
• Also includes an integration over the internal leg `4 to

eliminate the dependencies λ`3 from momentum conservation.
• Take the appropriate number of derivatives with respect to λ`3

ΩUV = ON ⊗

1

2

ℓ3

ℓ4

Ω2 (62)



General N
N 6= 4

It is not surprising that higher order poles come with derivatives.



General N
N 6= 4

Finally, let us briefly study non-planar diagrams.



Non planar
N 6= 4

Example
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Summary and Outlook



Summary and Outlook

To recap today’s talk
• Amplitudes are defined by their factorization properties on

their poles
• Using the dual formulation we introduced a procedure for

taking the residue of an on-shell diagram on it’s UV pole -
this is not something that one expected apriori!

• This can point us to directions to look in for the UV structure
of amplitudes



Summary and Outlook

Outlook
• How does this procedure for the UV poles relate to the actual

amplitudes and loop integrands (i.e. not just for the on-shell
diagram)?

• Results have implications in search for positive geometries
that could capture amplitudes in theories with non-trivial UV
physics.

• Non-planar results are needed for instance for N = 8 SuGRA.



Thank you for your attention!


