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Motivation

® Unitarity of the S-matrix has been an immensely important
concept in the study of scattering amplitudes.

® For instance, factorization on poles p; — 0 leading to the soft
bootstrap program.

® Unitarity of the S-matrix does not predict what happens with
tree-level amplitudes (or loop integrands) on UV poles when
the external momenta (or loop momenta) go to infinity

® |Is there a notion of unitarity at infinity?

® On-shell diagrams are natural objects to consider (gauge
invariance, factorization manifest)




Motivation

® We will study on-shell diagrams in mainly A/ = 3 and show
that there is a "factorization” property for diagrams with
poles at infinity

® |Important to note: the amplitudes themselves don’t have
poles at infinity, but the diagrams do.

® For N < 3 these poles also start to show up in the amplitudes.




Scattering amplitudes

Motivation

From perspective of experimentalists:
® Amplitudes are highly non-local objects.

® They measure incoming and outgoing states at infinity




Scattering amplitudes

Motivation

From theorists perspective
® Amplitudes are highly non-local objects.

® Traditionally described through very local processes, e.g.
Feynman diagrams




Scattering amplitudes

Motivation

® Amplitudes are highly non-local objects.
® What else can we fill this blob with?




Scattering amplitudes

Color-ordering

We will focus on Yang-Mills where kinematic- and color
information decompose in the amplitude.

A = N T[T - T ] AT (o (1), . o(n). (1)
UGSn/Zn

DDM Basis, from Jacobi identities

A:Lree — Z falao'(Q)blfblaa(Q) ba _fbn73ao'(n—2)anAn(1’ o.n). (2)

TES,_2

= Only need to calculate color-ordered amplitudes.




Scattering amplitudes
sYM

® In the remaining we will work with super-symmetric
Yang-Mills amplitudes
e Characterized by A: number of super-symmetry generators
A ot
Q7 Qy-
* We will work mainly with N' = 2,3, 4.




Scattering amplitudes
Spinor-Helicity

® We are going to focus on massless spin 1 particles

® All data needed about particles is helicities + and momenta
o
® We then take
i
® And define usual Pauli matrices

no_ 1 2 3
Top = (]laﬁ’aa[%’UaB’Ua/j’)

(0")% = (19, ~(61), ~(0*)3%, — (o*)*)




Scattering amplitudes
Spinor-Helicity

® We can use this to define momentum bi-spinors from the
four-momenta p,

Poy = a0l P =)

® Determinant of this is 0 from the massless condition

® Pugp has rank 1 = write as product of two 2-spinors A, 5\3




Scattering amplitudes
Spinor-Helicity

® We can use the bra-ket notation to define spinor (braket)
products

Pag = dars = D)y [Pl (6)

as well as

(kp) = (k|*|p)a, and [kp] = [Kla|p]® (7)




On-shell recursion

® Locality (i.e. point interactions) dictates: the only poles are

propagators
1 .
2k with P = Zpk (8)
k
e Unitarity of the S-matrix forces the amplitude to factorize on
this pole,
A —) AL AR (9)

® This is true for IR poles, P2 — 0, no such structure is known
for UV poles, P2 — cc.




On-shell recursion
BCFW

® This is known as on-shell recursion, i.e. building higher point
amplitude from lower point ones.

® An explicit example of this is BCFW (Britto, Cachazo, Feng,
Witten) recursion.

® Perform complext shift
)\i — )\z — Z)\j

SRS (10)
Aj = Aj+ 2




On-shell recursion
BCFW

e Shift conserves momentum.

® Consider the holomorphic function %, i.e. the shifted
amplitude.

e |f amplitude behaves nicely for z — co we can use Cauchy's
theorem to relate

(11)

z

An(z = 0) = — ZReSz:zk
k

Zn(z)]




On-shell recursion
BCFW

® On each z; pole some propagator ]3% = (stel ﬁk)Q goes on
shell.

® On each pole the amplitude factorizes
® Example, n-point MHV amplitude, under a 1, n shift




On-shell recursion
BCFW

® Recursively built amplitude from lower points.

e Keep recursing until everything is built from fundamental
lowest point amplitudes.




Unitarity

1-loop amplitude

® Unitarity allow us to write the amplitude as a linear
combination of basis integrals with gauge-invariant on-shell
prefactors
0in N:4

Al-loop Zak/dIkJerk/dI +ch/dI>O< +R

OlnN 1,2

e Coefficients determined using Unitarity cuts

® One-loop analogue of tree level unitarity




Unitarity

1-loop amplitude

® When maximal number of propagators are cut, we have
maximal cuts

e Cutting each propagator puts it on shell 612- =0

® For instance, we have the Quadruple cut:

(13)

® For each helicity configuration the coefficient then is summed
over solutions to cut conditions

akNZA1XA2XA3XA4

sol




On-Shell diagrams

® |terate both types of cuts until all propagators are cut
® Remaining object is build entirely of fundamental amplitudes

® These are on-shell diagrams
1

’ (15)




On-shell diagrams
Three-point amplitudes
The simplest amplitudes we can construct are three point. For

N =4

_ 04(P)e%(Q) _ 4(P)5*(Q)
- (12)(23)(31)° - [12]23)31
2 3

where,

P=X-A=MA+Xdo+A3h3, Q=77 = Ml + Aafja + Asis,
Q = [12]7s + [23]71 + [31]7%2

o~ 1,
() =g +7" g+ 571177] o1

1 - 1 T~J~
S,EIJKLU 77 n 9L+ 4,61JKL"7 n TIKTIL g .




On-shell diagrams

Three-point amplitudes

The simplest amplitudes we can construct are three point. For any

N
1+ 1~

(23)~ N5 (P)o*N (Q) _ 23 Ve(P)sV(Q)

(12)(23)(31) _ [12]23)31]
27 3 2f 3t

Since 0 = p3 = (p1 + p2)? = 2p1 - p2 = (12) [21], these obey
constrained kinematics,

AL~ X~ Ag, A1~ Az~ A3 (16)

I~




On-shell diagrams
Three-point amplitudes

® On-shell diagrams are build by gluing these fundamental
three-point vertices together.

e All vertices satisfy momentum conservation.

* Every propagator (internal line) is on-shell, p? = 0.

1

ot

—H/d ] e (I
J




On-shell diagrams
4 point amplitude

® Simplest example

0= ggi)\l)% 53—8;3)\3}4,
b= ke =

® Gluing is done by integrating over cut conditions

Q= / g e [P dXe PA A,
e GL(1) " GL(D)

><{As(l,51,64)A3(2,61,éz)Ag(s,EQ,ég)Ag(zl,53,54)} (18)

_dY(P)%(Q)
—(12)(23)(34)(41)




On-shell diagrams
4 point amplitude

01(P)o%(Q)

€= (12)(23)(34) (41)

(19)

e All poles in the amplitude correspond to sending one ¢; — 0.
® One pole is not present in the amplitude, (13).

® This is the pole at infinite momentum ¢; — oo, or the UV
pole.




On-shell diagrams

4 point amplitude

2 3
0y _(23) % (14)
6 J 2 (13) A1z, l3 = (13) A3,
1 3 (12)  ~ (34)
P Vs VO R s/ W
7 2= g M 4= (13) A
1 4

(20)

For example, sending (12) = 0 implies /2 = 0 and we get

2 3

>O .< _6((12))8(P)é*(Q)
o (23)(34)(41)




On-shell diagrams
Higher point amplitudes

® Higher point diagrams correspond to BCFW terms

® For MHV amplitudes we obtain 1 diagram at all points
3 point amplitude

eited eas

4 point amplitude




On-shell diagrams

Identity moves

® The following moves do not change the on shell function for
the diagram — are identity moves

2 3 2 3
Square move: E:i = j:{ (22)
1 4 1 4




Dual Formulation

® Consider momentum conservation:

4 P) = 62N N) = S AL 4 o+ Aphn) (24)

Introduce a k-plane in n-dimensions represented by a

(k x n)—matrix (modded out by GL(k) since such row
operations leave the k-plane invariant).

® This space is denoted by G(k,n), the Grassmannian.

® A point in this space is represented by a (k x n) matrix, which
we refer to as the C-matrix.

Linearized momentum conservation condition

§(C - 7) = 8r=R2(cl . \) s (0. X)sHN (C . 7)




Dual Formulation

Interpretation

® Geometrically we can visualize this in "particle space”

)‘2—plane




Dual Formulation

Interpretation

® What is the connection to on-shell diagrams?

® They parameterize C' in a certain way




Dual Formulation

Interpretation

® |ntroduce orientation for each diagram by assigning arrows to
all edges where

® Black vertices have two incoming and one outgoing arrow.
® White vertices have one incoming and two outgoing arrows.

® Then assign edge variables to all edges, fixing in each vertex
one variable to 1.

® The C matrix is then given by

Coa= > [ (27)

Fa—)a j




Dual Formulation

Interpretation

® The on-shell function associated with the an on-shell diagram
in N =4 SYM theory is given by

/H dal (28)

® where the §-functions let us determine the a's.




Dual Formulation

As an example, take

2 3
(6]

(1l a1 0 a4 1 [ 1 —az O
* @3 :>C_<0 a9 1 ag)’c _<—a4 0 —Q3 1>.

oy
1 4

which e.g. leads to
SHCE - N) = 82 (—ar A + Ao — agA3)0%(—auh; — aghs + Ag).

We can use this to solve for a's.




Dual Formulation

Explicitly
B (2 (29
4= a1a2a3a4<13>45< ’ <13>>‘5( ! <13>>
A Y S )
><6( 3 <13>>5( 4 <13>> (30)
5 (Q) 6 (P)
(12)(23)(34)(41)




Dual Formulation

® So on-shell diagrams can be used to find the tree level
amplitude, or the maximal cut of a loop integrand.




Dual Formulation

® With the basics introduced, we can focus on the pole
structure.

® Importantly the UV structure will not correspond to that of
the amplitudes themselves.

® But seeing how the on-shell diagrams behave can give a clue
on what directions to look in for the amplitudes.




Dual Formulation

Interpretation

® Poles in ) correspond to sending edges to 0 or oo
® For instance for 6-point MHV,




Dual Formulation
N #4

e This is simple enough. What about N # 47
® We have to modify

/Hda’ (- 2)T (33)
® The Jacobian J is given by

T=1+> fi+ S i+ > ffifit -~

disjoint disjoint

pairs ,j pairs 4,5,k
with f; is a clockwise-oriented product of edge-variables in
closed cycles, and the sums are over disjoint collections of
these closed cycles.




Dual Formulation
N #4

Example:

2 3
(6]

« « _ 0420430445 1 0425 0

1 3 ¢ ( add 0 ajagasd 1 (35)
(67]

1 4

The § that appears here corresponds to a geometric series, which
can be written as:

= 1
E a1a2a3a4 =
0 1 — 130y




Dual Formulation

N #4
Example:
2 3
Q2
(65} Qs
(87]
1 4
The Jacobian from the internal cycle is
(13)(24)
= 1 — =
J Q10230 (12)(34)

The on-shell form is then given by

ot

24)N64(P)SN(Q) ((12)(34)
(12)(23)(34) (41) <<13><24>

Qbare

(38)




Dual Formulation
N #4

Q2

Qy

® Let us study this result
(24N §A(P)N(Q) [ (12)(34)\ TN
- __(12)(23)(34){41) <(13><24>> (40)
Qpare

® Deletes poles that stem from edges that are not removable

® Introduces pole at infinity (13).



Dual Formulation
N #4

® For now, focus on N' = 3 = Simple Poles

e Important point: For A’'=4 SYM theory each on-shell diagram
directly corresponds to a cut of the loop integrand

e For N'<4 SYM one has to sum over all internal configurations
for fixed external helicities




Dual Formulation
N # 4

® For N'<4 SYM one has to sum over all internal configurations
for fixed external helicities,

® Example: For legs 2,4 incoming there are two possible
internal orientations,

a2 a2

o7 e%




Dual Formulation
N #4

® For N' =3 we get,

Loy (12)(23) 64(P)%(Q) | (23)(14) 6*(P)%(Q)

Ot As(17273747) = o ey v (13) T (12)(23) (30) (41) (13)
_ (24)6*(P)5%(Q)
©(12)(23)(34)(41)

So
Cut [AN=3] = Cut [4AN=]

ONS [AN=3] £ ONS [AN=4]
where ONS: On-shell diagram

(42)




Dual Formulation
N #4

® For now, focus on on-shell diagrams in N’ = 3 = Simple Poles

® What happens if we sit on the pole at infinity?




Dual Formulation
N #4

2
_ 64(P)d%(Q)
= 3 (14)(13) (43)
1
3 2

4 6

1 4




Dual Formulation
N £4

Video showing schematics:




Dual Formulation

Other example

(44)

The on-shell function is then equal to

' (P)3%(Q)
(12)(45)(13)(35)




Dual Formulation
N #4

Blow up each loop individually

(46)

We know how the box blows up already




Dual Formulation
N #4

The pentagon on the other hand,

3 3
0> D 1 D
2 — (47)
F
O
2 F
1

where the 4-point vertex can be further expanded as a chain of
3-point vertices.




Dual Formulation
N £4

Video showing schematics:




Dual Formulation
N # 4

Gluing back with the right box we get a pentagon diagram,

3 3
4
D D x4
2 SN 1
F F 5
5
1
(48)
where
4 6
o SPEQ o

— (12)(45)(13)(35)




Dual Formulation
N #4

This should not be surprising since the pentagon was really just a

box
3
> O D
2 = (50)
F
O
1

which we already knew how to do.




Dual Formulation
N # 4

® Let us generalize this to higher points
e Sufficient in planar diagrams to treat n-gons

® These are secretly just boxes!
1+1




Dual Formulation
N # 4

The residue is then simple to generalize

1+1




Dual Formulation
N #4

These all are MHV diagram with only two black vertices.

For N\MHV diagrams we have k — 2 black vertices.

® The expressions are a lot more complicated, but the result is
similar

Find result for n-gon then attach these to remaining diagram.




Dual Formulation
N # 4

On UV pole on-shell diagrams behaves as




Larger diagrams
N #4

Take three-loop six-point NMHV leading singularity diagram

~ 8%(Q)8* (P)é([56]m1+[61]75+[15]76)
~(34)(2|3+4/1])(3|5+6|1](2|1+6|5][56]

® Hexagon pole at (2[3+4|1] =0
® Box pole at (3|5+6]|1]




Larger diagrams
N #4

® Contracting the Hexagon into a tree and then attaching to
the remaining diagram

® Notice the change in orientation — this is a general feature
since for larger diagrams this gives non planar diagram




Larger diagrams
N #4

® |et us consider a more intricate example — the top
dimensional cell of G (3,6)

® This can be obtainEd by attaching a BCFW bridge to the
previous diagram: Xl = Xl + an and /):2 =Xy — a1\
® On shell conditions leave one parameter unfixed
day (4]1+56]6(2)
/ a1 5754(23) (34) (2|3+4|5] (4]5+6]1][16][56]
Qbare
 550(23)(4/5+6[1][16]
(2|5+6|1](3|5+6|1]({4]1+5|6])




GRT
N #£4
For N/ = 4 the pole structure can be illustrated as follows




GRT
N #4

® Where, through the Global Residue Theorem (GRT)

6%(P)o°%(Q) o([34])775+ 4573+ [53]7a)
s345(34][45](16) (12) (2[3+4/5)(6]1+2]3]

6
Z Q; =0, with Q=
i=1

® This is directly linked to the six-point NMHYV tree-level
amplitude

Atéfge:Ql+Q3+Q5:_Q2_Q4_QG (56)




GRT

N #4
For our N/ = 3 example we have a new GRT, where we also
explicitly see the non planar structure




GRT

N #4
Let us highlight the Hexagon UV pole which gives the non-planar
diagram:

(58)




Dual Formulation
N £4

Video showing schematics:




General N

N #4

More general problem

(59)

UV pole of this is obtained by acting on the collapsed diagram
with a differential operator O




General N/

N #4

ls

Quv =0V © (60)

4

! (205)[2¢3] d \\**V
O = 5o <<15>[1é§ <A2 dAe3>> (61

with




General N

N #4

The procedure is as follows
® Calculate the bare on-shell function of the lower-loop on-shell
diagram obtained by diagrammatic rules
® Crucially this relies on leaving the integration over an unfixed
leg Mg, such that one can act with derivative.
® Also includes an integration over the internal leg ¢4 to
eliminate the dependencies Ay, from momentum conservation.

® Take the appropriate number of derivatives with respect to A,




General N/
N £4

It is not surprising that higher order poles come with derivatives.




General N/
N 44

Finally, let us briefly study non-planar diagrams.




Non planar
N #4

Example




Summary and Outlook




Summary and Outlook

To recap today’s talk

® Amplitudes are defined by their factorization properties on
their poles
® Using the dual formulation we introduced a procedure for

taking the residue of an on-shell diagram on it's UV pole -
this is not something that one expected apriori!

® This can point us to directions to look in for the UV structure
of amplitudes




Summary and Outlook

Outlook

® How does this procedure for the UV poles relate to the actual
amplitudes and loop integrands (i.e. not just for the on-shell
diagram)?

® Results have implications in search for positive geometries
that could capture amplitudes in theories with non-trivial UV
physics.

® Non-planar results are needed for instance for N' = 8 SuGRA.




Thank you for your attention!




