Nathaniel Sherrill University of Sussex

Joint Theory Seminar NBI, 11 May 2023

Constraining ultralight oscillators with atomic clocks

Based on: arXiv:2302.04565

In collaboration w/Xavier Calmet and National Physical Laboratory (NPL)

$$
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
$$

Standard Model General Relativity

$$
\mathcal{L}_{\text{SM}} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + i \bar{\psi}^j \gamma^\mu D_\mu \psi^j
$$

$$
+ \left(\bar{\psi}_L^i V_{ij} \Phi \psi_R^j + \text{h.c.} \right) - |D_\mu \Phi|^2 - V
$$

Parametrized by 18 dimensionless constants No dimensionless constants! (+1 more for θ_{OCD} **, + 7 more for massive** *v***s, ...)**

- **Dimensionless:** $\alpha, \mu = m_e/m_p$, CKM matrix elements, ...
	-

Fundamental constants

There are two types of physical constants

Dimensionful: $G, \hbar, c, ...$

The latter type are convention independent \Rightarrow "fundamental constants"

$$
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
$$

$$
\mathcal{L}_{\text{SM}} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + i \bar{\psi}^j \gamma^\mu D_\mu \psi^j
$$

$$
+ (\bar{\psi}_L^i V_{ij} \Phi \psi_R^j + \text{h.c.}) - |D_\mu \Phi|^2 - V(\Phi)
$$

- **Dimensionless:** $\alpha, \mu = m_e/m_p$, CKM matrix elements, ...
	-

Standard Model General Relativity

Fundamental constants

There are two types of physical constants

Dimensionful: $G, \hbar, c, ...$

The latter type are convention independent \Rightarrow "fundamental constants"

They *cannot* **be calculated, must be measured!**

FCs associated with deep questions

How many are there? Can they be explained dynamically (e.g. strings)? Intuition of measured values? Hierarchies? Are there patterns between them? **Are they "only" numbers, or more generally, functions of spacetime? [P. A. M. Dirac, Nature 139, 323 \(1937\)](https://www.nature.com/articles/139323a0)** "Large numbers hypothesis"

Explicit or apparent fundamental constant variations can be described by very light bosons interacting with the SM

Fundamental constants

Eddington, Dirac, Jordan, Teller, Fierz, … many others

$$
\mathcal{L}_{\text{int},\phi} \supset -\frac{1}{4}g(\phi)F_{\mu\nu}F^{\mu\nu}
$$

$$
\alpha \to \alpha(\phi)
$$

Integer-spin fields with very small masses

10−³³ eV ≲ *m* ≲ 1 eV

Integer-spin fields with very small masses

Dark energy (quintessence) Dark matter (ultralight oscillators) $m_{\phi} \approx 10^{-33} \text{ eV}$ **[J. Uzan, Living Rev. Rel. 14, 2 \(2011\)](https://link.springer.com/article/10.12942/lrr-2011-2)**

10−³³ eV ≲ *m* ≲ 1 eV

Interesting for several reasons, e.g.

Review

Integer-spin fields with very small masses

- Dark energy (quintessence)
- Dark matter (ultralight oscillators)
	- σ QCD axion 10^{-11} eV $\leq m_a \leq 10^{-2}$ eV
	- scalars & axion-like particles
	- dark photons, dark spin-2 $\Big\}$ 10⁻²² eV $\lesssim m \lesssim 1$ eV

10−³³ eV ≲ *m* ≲ 1 eV

Interesting for several reasons, e.g.

 $m_{\phi} \approx 10^{-33} \text{ eV}$ **[J. Uzan, Living Rev. Rel. 14, 2 \(2011\)](https://link.springer.com/article/10.12942/lrr-2011-2)** Review

{ *a*

[Axion DM](https://inspirehep.net/literature/2059869)

[Ultralight spin-0,1 DM](https://arxiv.org/abs/2203.14915)

Recent white papers

Integer-spin fields with very small masses

- Dark energy (quintessence) Dark matter (ultralight oscillators)
	- σ OCD axion 10^{-11} eV $\lesssim m_a \lesssim 10^{-2}$ eV
	- { *a* scalars & axion-like particles
	- dark photons, dark spin-2 $\Big\}$ 10⁻²² eV $\lesssim m \lesssim 1$ eV

10−³³ eV ≲ *m* ≲ 1 eV

Interesting for several reasons, e.g.

 $m_{\phi} \approx 10^{-33} \text{ eV}$ **[J. Uzan, Living Rev. Rel. 14, 2 \(2011\)](https://link.springer.com/article/10.12942/lrr-2011-2)** Review

[Axion DM](https://inspirehep.net/literature/2059869)

[Ultralight spin-0,1 DM](https://arxiv.org/abs/2203.14915)

Recent white papers

Experimental: because such wide range of masses *can* be probed with current technology

Strong theory motivations AND intense experimental interest/capabilities!

- Dark energy (quintessence) Dark matter (ultralight oscillators)
	- σ OCD axion 10^{-11} eV $\lesssim m_a \lesssim 10^{-2}$ eV
	- { *a* scalars & axion-like particles
	- dark photons, dark spin-2 $\Big\}$ 10⁻²² eV $\lesssim m \lesssim 1$ eV

Integer-spin fields with very small masses

10−³³ eV ≲ *m* ≲ 1 eV

 $m_{\phi} \approx 10^{-33} \text{ eV}$ **[J. Uzan, Living Rev. Rel. 14, 2 \(2011\)](https://link.springer.com/article/10.12942/lrr-2011-2)** Review

Interesting for several reasons, e.g.

[Axion DM](https://inspirehep.net/literature/2059869)

[Ultralight spin-0,1 DM](https://arxiv.org/abs/2203.14915)

Recent white papers

Experimental: because such wide range of masses *can* be probed with current technology

Strong theory motivations AND intense experimental interest/capabilities!

- Dark energy (quintessence) Dark matter (ultralight oscillators)
	- 10^{-11} eV $\leq m_a \leq 10^{-2}$ eV \Box scalars & axion-like particles { *a*
	- dark photons, dark spin-2 $\left.\right\}$ 10⁻²² eV $\le m \le 1$ eV

Integer-spin fields with very small masses

10−³³ eV ≲ *m* ≲ 1 eV

 $m_{\phi} \approx 10^{-33} \text{ eV}$ **[J. Uzan, Living Rev. Rel. 14, 2 \(2011\)](https://link.springer.com/article/10.12942/lrr-2011-2)** Review

-
-

Interesting for several reasons, e.g.

[Axion DM](https://inspirehep.net/literature/2059869)

[Ultralight spin-0,1 DM](https://arxiv.org/abs/2203.14915)

Recent white papers

Experimental: because such wide range of masses *can* be probed with current technology

Parametrize varying constant $g(x^{\mu})$ for low-energy probes

 $g(x^{\mu}) = g_0 +$ 1 $\frac{1}{\Lambda} \phi(x^{\mu}) + \cdots$

[arXiv:2302.04565](https://inspirehep.net/literature/2630943)

 $(c.f. g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu})$

couplings to fields $g_0 \rightarrow g(\phi)$

Parametrize varying constant $g(x^{\mu})$ for low-energy probes

$$
g(x^{\mu}) = g_0 + \frac{1}{\Lambda} \phi(x^{\mu}) + \cdots
$$

E.g. Bekenstein electrodynamics $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\lambda}$

$$
\mathcal{L} = \mathcal{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{1}{2\Lambda'}
$$

[J. D. Bekenstein, Phys. Rev. D 25, 1527 \(1982\)](https://www.worldscientific.com/doi/abs/10.1142/9789811203961_0027)

[arXiv:2302.04565](https://inspirehep.net/literature/2630943)

 $(c.f. g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu})$

couplings to fields $g_0 \rightarrow g(\phi)$

 Λ' $\frac{1}{\epsilon} \phi F_{\mu\nu} F^{\mu\nu}$

Parametrize varying constant $g(x^{\mu})$ for low-energy probes

$$
g(x^{\mu}) = g_0 + \frac{1}{\Lambda} \phi(x^{\mu}) + \cdots
$$

E.g. Bekenstein electrodynamics $e(x) = e_0 \epsilon(x) \approx e_0 + \frac{\phi}{\lambda}$

$$
\mathcal{L} = \mathcal{L}_{\text{QED}} + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 + \frac{1}{2\Lambda},
$$

[J. D. Bekenstein, Phys. Rev. D 25, 1527 \(1982\)](https://www.worldscientific.com/doi/abs/10.1142/9789811203961_0027)

Description in terms of conventional theories with new interactions

[arXiv:2302.04565](https://inspirehep.net/literature/2630943)

 $(c.f. g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu})$

couplings to fields $g_0 \rightarrow g(\phi)$

 Λ' $\phi F_{\mu\nu}F^{\mu\nu}$

$$
\ddot{\phi} + \Gamma \dot{\phi} + m^2 \phi \approx 0
$$

Covers a wide range of models (e.g. $\Gamma = 3H, \Gamma = 0, ...$)

$$
\ddot{\phi} + \Gamma \dot{\phi} + m^2
$$

Covers a wide range of models (e.g. $\Gamma = 3H, \Gamma = 0, ...$)

$$
\ddot{\phi} + \Gamma \dot{\phi} + m^2
$$

$$
\Gamma \to 0 \Rightarrow \phi(t) \approx \phi_0 \cos \left[m_\phi (1 + \frac{1}{2} v) \right]
$$

$$
\ddot{\phi} + \Gamma \dot{\phi} + m^2
$$

$$
\Gamma \to 0 \Rightarrow \phi(t) \approx \phi_0 \cos \left[m_\phi (1 + \frac{1}{2} v) \right]
$$

 $\mathscr{L}_{\text{int},\phi}$ ⊃ – *ϕ* Λ) *n* Search for ϕ couplings to SM $\Big| S = d^4x \sqrt{-g} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \supset -\Big(\frac{I}{\Lambda}\Big) \cdot \mathcal{O}_{SM}$ $S = \int d^4x \sqrt{-g} \mathcal{L}_{int, \phi}$

 $\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

 $\mathscr{L}_{\text{int},\phi}$ ⊃ – *ϕ* Λ) *n* Search for ϕ couplings to SM $\Big| S = d^4x \sqrt{-g} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \supset -\Big(\frac{I}{\Lambda}\Big) \cdot \mathcal{O}_{SM}$ $S = \int d^4x \sqrt{-g} \mathcal{L}_{int, \phi}$

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

(see, e.g.)

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

Search for
$$
\phi
$$
 couplings to SM $S = \int d^4x \sqrt{-g} \mathcal{L}_{int, \phi} \quad \mathcal{L}_{int, \phi} \supset \left(\frac{\phi}{\Lambda} \right)^n \cdot \mathcal{O}_{SM}$

 $\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

$$
\alpha(\phi) = \alpha \left(1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n
$$

$$
m_j(\phi) = m_j \left(1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d)
$$

$$
\Lambda_{\text{QCD}}(\phi) = \Lambda_{\text{QCD}} \left(1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n
$$

Terms induce shifts in FCs

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

(see, e.g.)

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

Search for
$$
\phi
$$
 couplings to SM $S = \int d^4x \sqrt{-g} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \mathcal{L}_{int, \phi} \rightarrow -\left(\frac{\phi}{\Lambda}\right)^n \cdot \mathcal{O}_{SM}$

 $\mathscr{L}_{\text{int},\phi} = (\kappa \phi)$ *n* (*d*(*n*) *γ* $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-d_{m_e}^{(n)}$ $\left(\frac{m}{m_e} m_e \bar{\psi}_e \psi_e\right)$ + …

$$
\alpha(\phi) = \alpha \left(1 + d_{\gamma}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \alpha}{\alpha} = d_{\gamma}^{(n)}(\kappa \phi)^n
$$

$$
m_j(\phi) = m_j \left(1 + d_{m_j}^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta m_j}{m_j} = d_{m_j}^{(n)}(\kappa \phi)^n \quad (j = e, u, d)
$$

$$
\Lambda_{\text{QCD}}(\phi) = \Lambda_{\text{QCD}} \left(1 + d_g^{(n)}(\kappa \phi)^n \right) \Rightarrow \frac{\delta \Lambda_{\text{QCD}}}{\Lambda_{\text{QCD}}} = d_g^{(n)}(\kappa \phi)^n
$$

Terms induce shifts in FCs

$$
\kappa = \sqrt{4\pi G} = \left(\sqrt{2}M_P\right)^{-1}
$$

$$
\kappa^n d_j^{(n)} \leftrightarrow 1/\Lambda^n
$$

(see, e.g.)

[P. W. Graham et al., PRD 93, 075029 \(2016\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029)

…but how does one measure with clocks?

Atomic clocks count cycles of EM radiation emitted from suitable transitions

Atomic clocks count cycles of EM radiation emitted from suitable transitions

Atomic clocks count cycles of EM radiation emitted from suitable transitions

Common clock transitions

 $\nu_{\text{vibrational}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2}$

Atomic clocks count cycles of EM radiation emitted from suitable transitions

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(\alpha)
$$

$$
\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot \alpha^2 I
$$

$$
\nu_{\text{vibrational}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2}
$$

Atomic clocks count cycles of EM radiation emitted from suitable transitions

 $K_{g} \equiv$

$$
\frac{d\nu}{\nu} = K_g \cdot \frac{dg}{g} \qquad K_g \equiv \frac{\partial \ln \nu}{\partial \ln g} \qquad \text{``sensitivity factor''}
$$

∂ln*ν*

∂ln*g* dependent on atom/transition

[V.V. Flambaum, V. A. Dzuba, Can. J. Phys. 87, 25 \(2009\)](https://cdnsciencepub.com/doi/10.1139/p08-072)

-
-

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(a)
$$

$$
\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot a^2 I
$$

$$
\nu_{\text{vibrational}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2}
$$

Atomic clocks count cycles of EM radiation emitted from suitable transitions

 $K_{g} \equiv$ -

"sensitivity factor" ∂ln*g* dependent on atom/transition

$$
\frac{d\nu}{\nu} = K_g \cdot \frac{dg}{g}
$$

∂ln*ν*

Need reference that has distinct sensitivity $r = v_1/v_2$ is dimensionless observable $Difference \ \Delta K_{1,2}$ is relevant

[V.V. Flambaum, V. A. Dzuba, Can. J. Phys. 87, 25 \(2009\)](https://cdnsciencepub.com/doi/10.1139/p08-072)

Common clock transitions

$$
\nu_{\text{optical}} = A \cdot (cR_{\infty}) \cdot F_{\text{opt}}(a)
$$

$$
\nu_{\text{microwave}} = B \cdot (cR_{\infty}) \cdot a^2 I
$$

$$
\nu_{\text{vibrational}} = C \cdot (cR_{\infty}) \cdot \mu^{1/2}
$$

"A network of clocks for measuring the stability of fundamental constants"

[G. Barontini et al., EPJ](https://inspirehep.net/literature/1994615) [Quantum Technol. 9, 12 \(2022\)](https://inspirehep.net/literature/1994615)

QSNET

"A network of clocks for measuring the stability of fundamental constants"

[G. Barontini et al., EPJ](https://inspirehep.net/literature/1994615) [Quantum Technol. 9, 12 \(2022\)](https://inspirehep.net/literature/1994615)

QSNET

Ratio variations

Parametrization of atomic frequency *[V.V. Flambaum et al., Phys. Rev. D 69, 115006 \(2004\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.115006)*

 $\nu = (\text{const.}) (cR_{\infty}) \cdot \alpha^{K_{\alpha}} \cdot (m_e/\Lambda_{\text{QCD}})^{K_{\mu}} \cdot (m_q/\Lambda_{\text{QCD}})^{K_q}$ $m_p \approx A \cdot \Lambda_{\text{QCD}} + \text{light quarks}$ \longrightarrow quark masses + magnetic moments $q \equiv (u+d)/2$

⇒ *^δ^r r* $= \Delta K_{\alpha} d_{\gamma}^{(n)}(\kappa \phi)^n + \Delta K_{\mu} (d_{m_e}^{(n)} - d_g^{(n)}) (\kappa \phi)^n + \Delta K_q (d_{m_q}^{(n)} - d_g^{(n)}) (\kappa \phi)$ *n*

Ratio variations

Parametrization of atomic frequency *[V.V. Flambaum et al., Phys. Rev. D 69, 115006 \(2004\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.115006)*

For NPL clocks

$$
\left(\frac{\delta r}{r}\right)_{\text{Yb+/Sr}} = -6.01 d_{\gamma}^{(n)}
$$

$$
\left(\frac{\delta r}{r}\right)_{\text{Sr/Cs}} = -\left(2.77 d_{\gamma}^{(n)}\right)
$$

^γ (*κϕ*) *n*

 $q_{\gamma}^{(n)} + d_{m_e}^{(n)} - d_g^{(n)} + 0.07(d_q^{(n)} - d_g^{(n)})\left(\kappa \phi\right)^n$

 $m_p \approx A \cdot \Lambda_{\text{QCD}} + \text{light quarks}$ \longrightarrow quark masses + magnetic moments $q \equiv (u + d)/2$

 $g_m^{(n)} - d_g^{(n)}(\kappa\phi)^n + \Delta K_q(d_{m_q}^{(n)} - d_g^{(n)}(\kappa\phi))$ *n*

$$
\nu = (\text{const.}) (cR_{\infty}) \cdot \alpha^{K_{\alpha}} \cdot (m_e/\Lambda_{\text{QCD}})^{K_{\mu}} \cdot (m_q/\Lambda_{\text{QCD}})^{K_q}
$$

$$
\Rightarrow \left| \frac{\delta r}{r} = \Delta K_{\alpha} d_{\gamma}^{(n)} (\kappa \phi)^n + \Delta K_{\mu} (d_{m_e}^{(n)}) \right|
$$

Ratio variations

Parametrization of atomic frequency *[V.V. Flambaum et al., Phys. Rev. D 69, 115006 \(2004\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.115006)*

For NPL clocks

$$
\left(\frac{\delta r}{r}\right)_{\text{Yb+/Sr}} = -6.01 d_{\gamma}^{(n)}
$$

$$
\left(\frac{\delta r}{r}\right)_{\text{Sr/Cs}} = -\left(2.77 d_{\gamma}^{(n)}\right)
$$

^γ (*κϕ*) *n*

 $a_{m_e}^{\prime} - a_{g}^{\prime} + 0.07(a_{q}^{\prime} - a_{g}^{\prime})$ $\equiv d_{\rm Sr/Cs}^{(n)}$ $q_{\gamma}^{(n)} + d_{m_e}^{(n)} - d_g^{(n)} + 0.07(d_q^{(n)} - d_g^{(n)}) (k\phi)^n$

 $m_p \approx A \cdot \Lambda_{\text{QCD}} + \text{light quarks}$ \longrightarrow quark masses + magnetic moments $q \equiv (u + d)/2$

 $g_m^{(n)} - d_g^{(n)}(\kappa\phi)^n + \Delta K_q(d_{m_q}^{(n)} - d_g^{(n)}(\kappa\phi))$ *n*

$$
\nu = (\text{const.}) (cR_{\infty}) \cdot \alpha^{K_{\alpha}} \cdot (m_e/\Lambda_{\text{QCD}})^{K_{\mu}} \cdot (m_q/\Lambda_{\text{QCD}})^{K_q}
$$

$$
\Rightarrow \left| \frac{\delta r}{r} = \Delta K_{\alpha} d_{\gamma}^{(n)} (\kappa \phi)^n + \Delta K_{\mu} (d_{m_e}^{(n)}) \right|
$$

NPL data: time series

arXiv:2302.04565

*R** *ij*

⇒

∝

δμ

μ

,

 δg_N

gN

NPL data: clock instabilities

Mean ratios not constant over time

Instability = measure of frequency fluctuations

$$
\sigma_r^2(\tau) \sim \frac{1}{2} \langle (\bar{r}_{i+1} - \bar{r}_i)^2 \rangle
$$

NPL data: clock instabilities

Mean ratios not constant over time

Instability = measure of frequency fluctuations

$$
\sigma_r^2(\tau) \sim \frac{1}{2} \langle (\bar{r}_{i+1} - \bar{r}_i)^2 \rangle
$$

Data characteristic of Gaussian white noise (stat uncertainties dominant)

Representative of operating @ the atomic transition!

Model-independent constraints

Translate instabilities to bounds on shifts *κ*^{*n*} | $d_\gamma^{(n)}$ | $\sigma_{\phi^n}(\tau) \lesssim 2.3 \times 10^{-16} / \sqrt{\tau/s}$ $\kappa^n | d_{\text{Sr/Cs}}^{(n)} | \sigma_{\phi^n}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$

Model-independent constraints

δr **Translate instabilities to bounds on shifts** *κ*^{*n*} | $d_\gamma^{(n)}$ | $\sigma_{\phi^n}(\tau) \lesssim 2.3 \times 10^{-16} / \sqrt{\tau/s}$ $\kappa^n | d_{\text{Sr/Cs}}^{(n)} | \sigma_{\phi^n}(\tau) \lesssim 1.6 \times 10^{-13} / \sqrt{\tau/s}$ E.g. for two times separated by 1000 seconds $\approx \kappa^n |d_\gamma^{(n)}| [\phi^n(t+\tau) - \phi^n(t)] \lesssim 7 \times 10^{-18}$ $10⁵$ **No functional form of** $\phi(t)$ **assumed!**

NPL data: amplitude spectra

Assuming underlying oscillatory signal

Fourier transform time-series data Fit to signals \Box

$~\sim$ Amp \cdot cos($2\pi ft$)

NPL data: amplitude spectra

Assuming underlying oscillatory signal

Fourier transform time-series data Fit to signals \Box

\sim Amp \cdot cos($2\pi ft$)

Significant peaks *could* indicate underlying ultralight oscillator

peak width $\propto \Gamma$ $\phi(t)/\phi_0 \sim e^{-(3\Gamma/2)t} \cos(m_\phi t + \delta)$

NPL data: amplitude spectra

Assuming underlying oscillatory signal

Significant peaks *could* indicate underlying ultralight oscillator

peak width $\propto \Gamma$ $\phi(t)/\phi_0 \sim e^{-(3\Gamma/2)t} \cos(m_b t + \delta)$

Data consistent with stat uncertainties (no signal)

⇒ **set constraints on ultralight DM**

Fourier transform time-series data Fit to signals

$~\sim$ Amp \cdot cos($2\pi ft$)

 $\Delta x \Delta p \sim 1$ $n \cdot \lambda_{\rm DB}^3 \gg 1$

Ultralight DM

 $20m$ frequency α rest mass $m_A =$ Compton frequency \propto rest mass $m_{\phi} = 2\pi f_{\phi} = 2\pi f_{C} =$

Ultralight DM

Oscillations are *coherent*

$$
\tau_C = \frac{2\pi}{\frac{1}{2}mv_{DM}^2} \ge 10^6 T_C
$$

$$
\lambda_C = \frac{2\pi}{mv_{DM}} \gg R_{\text{solar sys}}
$$

 $\Delta x \Delta p \sim 1$ $n \cdot \lambda_{\rm DB}^3 \gg 1$ Particle-like 2*π* T_C

 $\gg T_{\text{experiment}}$

rstem

 $20m$ frequency α rest mass $m_A =$ Compton frequency \propto rest mass $m_{\phi} = 2\pi f_{\phi} = 2\pi f_{C} =$

Ultralight DM

Oscillations are *coherent*

$$
\tau_C = \frac{2\pi}{\frac{1}{2}mv_{DM}^2} \ge 10^6 T_C
$$

$$
\lambda_C = \frac{2\pi}{mv_{DM}} \gg R_{\text{solar sys}}
$$

ULDM = macroscopic coherently oscillating field $\phi(t) \approx \phi_0 \cos(m_\phi t)$

 $\Delta x \Delta p \sim 1$ $n \cdot \lambda_{\rm DR}^3 \gg 1$ Particle-like 2*π* T_C

 $\gg T_{\text{experiment}}$

≫ *R*solar system

 $\rho_{DM} = \rho_{DM}(R_0) \approx 0.3 \text{ GeV/cm}^3$

$$
\phi_0 = \frac{\sqrt{2\rho_{\rm DM}^{\rm local}}}{m_{\phi}}
$$

Constraints

$\frac{\delta r}{\delta t} = \sum \Delta K_g d_g^{(n)} (\kappa \phi)^n$ and $\phi(t) \approx \frac{\sqrt{2\rho_{DM}}}{m} \cos(m_\phi t)$ *r* $=$ \sum *g* $\Delta K_g d_g^{(n)}(\kappa \phi)$ *n* Because $= \sum_{i} \Delta K_{\varrho} d_{\varrho}^{(n)} (\kappa \phi)^n$ and $\phi(t) \approx \frac{1}{\sqrt{2\pi}} \cos(m_{\varphi} t)$ $(m_{\varphi} = 2\pi f_{\varphi})$

 $\boldsymbol{\phi}(t) \thickapprox$ 2ρlocal
Ο DM *m^ϕ*

Map amp. spectrum onto magnitude of oscillations for lowest-order ($n = 1,2$ **) ints.**

Constraints

$\frac{\delta r}{\delta t} = \sum \Delta K_g d_g^{(n)} (\kappa \phi)^n$ and $\phi(t) \approx \frac{\sqrt{2\rho_{DM}}}{m} \cos(m_\phi t)$ *r* $=$ \sum *g* $\Delta K_g d_g^{(n)}(\kappa \phi)$ *n* Because $= \sum_{i} \Delta K_{\rho} d_{\rho}^{(n)} (\kappa \phi)^{n}$ and $\phi(t) \approx \Delta t$ $\cos(m_{\phi} t)$ $(m_{\phi} = 2\pi f)$

 $\boldsymbol{\phi}(t) \thickapprox$ 2ρlocal
Ο DM *m^ϕ* $(m_{\phi} = 2\pi f_{\phi})$

Map amp. spectrum onto magnitude of oscillations for lowest-order ($n = 1,2$ **) ints.**

Constraints

$\frac{\delta r}{\delta t} = \sum \Delta K_g d_g^{(n)} (\kappa \phi)^n$ and $\phi(t) \approx \frac{\sqrt{2\rho_{DM}}}{m} \cos(m_\phi t)$ *r* $=$ \sum *g* $\Delta K_g d_g^{(n)}(\kappa \phi)$ *n* Because $= \sum_{i} \Delta K_{\rho} d_{\rho}^{(n)} (\kappa \phi)^{n}$ and $\phi(t) \approx \Delta t$ $\cos(m_{\phi} t)$ $(m_{\phi} = 2\pi f)$

 $\boldsymbol{\phi}(t) \thickapprox$ 2ρlocal
Ο DM *m^ϕ* $(m_φ = 2πf_φ)$

Map amp. spectrum onto magnitude of oscillations for lowest-order ($n = 1,2$ **) ints.**

Constraints

For $n=2$ *δr* $r \mid_{\text{osc.}}$ ∝ 1 M_P^2 *P*

 $cos(2m_{\phi}t) \rightarrow f = 2f_{\phi}$

Constraints

Constraints

May also consider ϕ – Higgs couplings $\mathscr{L}_H = -A\phi H^{\dagger}H$

Mixing generates effective interactions \mathcal{L}

Constraints

$$
\mathcal{C}_{\text{Higgs,eff.}} = \frac{A \langle h \rangle}{m_h^2} \phi \left(\sum_f g_{hff} \bar{\psi}_f \psi_f + \frac{g_{h\gamma\gamma}}{\langle h \rangle} F_{\mu\nu} F^{\mu\nu} \right)
$$

$$
\frac{\delta r}{r} = \Delta K_H \frac{A}{m_h^2} \frac{\sqrt{2\rho_{DM}}}{m_{\phi}} \cos(m_{\phi} t) \qquad K_H = \frac{\alpha}{2\pi} K_{\alpha} - (1 - b)K_{m_e} - 1.05(1 - b)K_{m_q}
$$

With ΔK_H ~ 0.5 constraints on A are obtained Sr/Cs ≈ 0.5 constraints on A

[F. Piazza, M. Pospelov, Phys. Rev. D 82, 043533](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.043533)

[Y. V. Stadnik, V. V. Flambaum, PRA 94, 022111 \(2016\)](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.022111)

1 ΔK_H *δr* r $\mathsf{I}_{\text{Sr}/\text{Cs}}$ $= d_H^{(1)}$ *^H* (*κϕ*) 1

Constraints

 $n = 1 \; (f = f_{\phi})$

Clocks can also probe axion-like couplings

$$
\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G_{\mu\nu}^b \widetilde{G}^{b\mu\nu}
$$

Induces oscillations in nucleon mass and nuclear *g* factor

$$
\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{Sr/Cs}
$$

Kim, Perez, 2205.12988

transmits to sensitivity from Sr/Cs **ratio**

Constraints

 -15

Clocks can also probe axion-like couplings

$$
\mathcal{L}_a = \frac{g_s^2}{32\pi^2} \frac{a}{f_a} G_{\mu\nu}^b \widetilde{G}^{b\mu\nu}
$$

Induces oscillations in nucleon mass and nuclear *g* factor

$$
\frac{1}{f_a \cdot \text{GeV}^{-1}} = 10^{-10} \sqrt{\frac{m_{15}^2}{c_r \cdot 10^{-15}}} \left| \frac{\delta r}{r} \right|_{Sr/Cs}
$$

Kim, Perez, 2205.12988

transmits to sensitivity from Sr/Cs **ratio**

Constraints

 -15

Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (ULDM, ALPs, …) Experimental funding/capabilities rapidly increasing

-
-

[New Horizons: Scalar and Vector Ultralight](https://arxiv.org/abs/2203.14915) [Dark Matter, 2022 Snowmass Summer Study](https://arxiv.org/abs/2203.14915)

[New Horizons: Scalar and Vector Ultralight](https://arxiv.org/abs/2203.14915) [Dark Matter, 2022 Snowmass Summer Study](https://arxiv.org/abs/2203.14915)

Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (axions, ULDM, …) Experimental funding/capabilities rapidly increasing

New constraints from NPL data

New constraints on scalar and axion-like ULDM

-
-

Model-independent constraints from instabilities of Yb⁺, Sr, and Cs clocks

Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (axions, ULDM, …) Experimental funding/capabilities rapidly increasing

New constraints from NPL data

New constraints on scalar and axion-like ULDM

Excellent future prospects

Longer datasets give access to *lighter* masses

-
-

Model-independent constraints from instabilities of Yb⁺, Sr, and Cs clocks

New QSNET clocks w/larger *K* factors ⇒ drive exclusion regions *downward*

