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The latter type are convention independent  “fundamental constants”⇒

They cannot be calculated, must be measured!



How many are there?

Can they be explained dynamically (e.g. strings)?

Intuition of measured values? Hierarchies?

Are there patterns between them?

Are they “only” numbers, or more generally, functions of spacetime?

FCs associated with deep questions

Explicit or apparent fundamental constant variations can 
be described by very light bosons interacting with the SM 

P. A. M. Dirac, Nature 139, 323 (1937)

Fundamental constants
Eddington, Dirac, Jordan, Teller, Fierz, … many others 

“Large numbers hypothesis”

ℒint,ϕ ⊃ − 1
4 g(ϕ)FμνFμν

α → α(ϕ)

https://www.nature.com/articles/139323a0
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Parametrize varying constant  for low-energy probesg(xμ)
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Λ
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J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982)

Description in terms of conventional theories with new interactions

arXiv:2302.04565
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https://inspirehep.net/literature/2630943
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…but how does one 
measure with clocks?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029
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 is dimensionless observable 


Difference  is relevant

r = ν1/ν2

ΔK1,2

Measurements involve comparisons
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Ratio variations
Parametrization of atomic frequency V.V. Flambaum et al., Phys. Rev. D 69, 115006 (2004)

ν = (const.) (cR∞) ⋅ αKα ⋅ (me/ΛQCD)Kμ ⋅ (mq/ΛQCD)Kq

⇒ δr
r

= ΔKαd(n)
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− d(n)

g )(κϕ)n + ΔKq(d(n)
mq

− d(n)
g )(κϕ)n

mp ≈ A ⋅ ΛQCD + light quarks quark masses + magnetic moments

q ≡ (u + d)/2

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.69.115006
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NPL data: time series
arXiv:2302.04565

r[i/j] =
νi/νj − R*ij

R*ij

 and  constructed Yb+/Sr Sr/Cs

01 July 2019 15 July 2019

~ 2 weeks of measurements, roughly every 
second with 75% uptime

Observations made over same window⇒

∝
⏞
δα
α

∝
δμ
μ

,
δgN

gN



NPL data: clock instabilities

Mean ratios not constant over time 


Instability = measure of frequency 
fluctuations


σ2
r (τ) ∼

1
2

⟨(r̄i+1 − r̄i)2⟩



NPL data: clock instabilities

Mean ratios not constant over time 


Instability = measure of frequency 
fluctuations


σ2
r (τ) ∼

1
2

⟨(r̄i+1 − r̄i)2⟩

Data characteristic of Gaussian white 
noise (stat uncertainties dominant)


Representative of operating @ the 
atomic transition!⇒

Laser noise



Model-independent constraints
δg
g

=
1
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δr
r Translate instabilities to bounds on shifts

κn |d(n)
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Sr/Cs |σϕn(τ) ≲ 1.6 × 10−13/ τ/s



Model-independent constraints
δg
g

=
1

ΔKg

δr
r Translate instabilities to bounds on shifts

κn |d(n)
γ |σϕn(τ) ≲ 2.3 × 10−16/ τ/s

κn |d(n)
Sr/Cs |σϕn(τ) ≲ 1.6 × 10−13/ τ/s

E.g. for two times separated by 1000 seconds 

κn |d(n)
γ | [ϕn(t + τ) − ϕn(t)] ≲ 7 × 10−18

No functional form of  assumed!ϕ(t)

≈
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NPL data: amplitude spectra
Assuming underlying oscillatory signal

4 × 10−21 eV ≲ mϕ ≲ 8 × 10−17 eV

∼ Amp ⋅ cos(2πft)

Significant peaks could indicate 
underlying ultralight oscillator

peak width  ∝ Γ ϕ(t)/ϕ0 ∼ e−(3Γ/2)t cos(mϕt + δ)

Data consistent with stat uncertainties (no signal)

set constraints on ultralight DM ⇒

Fourier transform time-series data

Fit to signals
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ϕ0 =
2ρ local

DM

mϕULDM  macroscopic coherently oscillating field= ϕ(t) ≈ ϕ0 cos(mϕt)

ρDM = ρDM(R0) ≈ 0.3 GeV/cm3
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Map amp. spectrum onto magnitude of oscillations for lowest-order ( ) ints.n = 1,2

Because and (mϕ = 2πfϕ)

1
ΔKα

δr
r Yb+/Sr

= d(1)
γ (κϕ)1

n = 1 ( f = fϕ)

New parameter space probed



Constraints

1
ΔKα

δr
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= d(2)
γ (κϕ)2

For n = 2
δr
r osc.

∝
1

M2
P

cos(2mϕt) → f = 2fϕ

n = 2 ( f = 2fϕ)
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δr
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n = 2 ( f = 2fϕ)

n = 2 ( f = 2fϕ)



Constraints

ℒH = − AϕH†HMay also consider  couplings ϕ − Higgs

Mixing generates effective interactions ℒHiggs,eff. =
A⟨h⟩
m2

h
ϕ ∑

f

ghff ψ̄f ψf +
ghγγ

⟨h⟩
FμνFμν

δr
r

= ΔKH
A

m2
h

2ρDM

mϕ
cos(mϕt) KH =

α
2π

Kα − (1 − b)Kme
− 1.05(1 − b)Kmq

With  constraints on  are obtainedΔKH
Sr/Cs

≈ 0.5 A

F. Piazza, M. Pospelov, Phys. Rev. D 82, 043533

Y. V. Stadnik, V. V. Flambaum, PRA 94, 022111 (2016)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.043533
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.022111


1
ΔKH

δr
r Sr/Cs

= d(1)
H (κϕ)1

Constraints

n = 1 ( f = fϕ)



Clocks can also probe axion-like couplings

ℒa =
g2

s

32π2

a
fa

Gb
μν G̃ bμν

Induces oscillations in nucleon mass 
and nuclear  factorg

1
fa ⋅ GeV−1

= 10−10 m2
15

cr ⋅ 10−15

δr
r

Sr/Cs

Kim, Perez, 2205.12988

transmits to sensitivity from  ratioSr/Cs

Constraints
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Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (ULDM, ALPs, …)

Experimental funding/capabilities rapidly increasing



New Horizons: Scalar and Vector Ultralight 
Dark Matter, 2022 Snowmass Summer Study

d(1
)

γ

https://arxiv.org/abs/2203.14915
https://arxiv.org/abs/2203.14915
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m
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Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (axions, ULDM, …)

Experimental funding/capabilities rapidly increasing

New constraints from NPL data

Model-independent constraints from instabilities of , Sr, and Cs clocks

New constraints on scalar and axion-like ULDM 

Yb+

Excellent future prospects

Longer datasets give access to lighter masses

New QSNET clocks w/larger  factors  drive exclusion regions downwardK ⇒



(κϕ) d(1)
γ

1
4 FμνFμν ↔

ϕ
Λγ

1
4 FμνFμν

(future)

G. Barontini et al., EPJ Quantum Technol. 9, 12 (2022)

https://inspirehep.net/literature/1994615
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G. Barontini et al., EPJ Quantum Technol. 9, 12 (2022)
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1
4 FμνFμν ↔

ϕ
Λγ

1
4 FμνFμν

(future)

G. Barontini et al., EPJ Quantum Technol. 9, 12 (2022)

Yb+/Sr

Longer datasets

Larger  factorsK order of magnitude 
improvements!∼ 2 − 3

https://inspirehep.net/literature/1994615

